Step |
Hyp |
Ref |
Expression |
1 |
|
naddov2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +no 𝐵 ) = ∩ { 𝑥 ∈ On ∣ ( ∀ 𝑏 ∈ 𝐵 ( 𝐴 +no 𝑏 ) ∈ 𝑥 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝑎 +no 𝐵 ) ∈ 𝑥 ) } ) |
2 |
|
inrab |
⊢ ( { 𝑥 ∈ On ∣ ∀ 𝑏 ∈ 𝐵 ( 𝐴 +no 𝑏 ) ∈ 𝑥 } ∩ { 𝑥 ∈ On ∣ ∀ 𝑎 ∈ 𝐴 ( 𝑎 +no 𝐵 ) ∈ 𝑥 } ) = { 𝑥 ∈ On ∣ ( ∀ 𝑏 ∈ 𝐵 ( 𝐴 +no 𝑏 ) ∈ 𝑥 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝑎 +no 𝐵 ) ∈ 𝑥 ) } |
3 |
|
incom |
⊢ ( { 𝑥 ∈ On ∣ ∀ 𝑏 ∈ 𝐵 ( 𝐴 +no 𝑏 ) ∈ 𝑥 } ∩ { 𝑥 ∈ On ∣ ∀ 𝑎 ∈ 𝐴 ( 𝑎 +no 𝐵 ) ∈ 𝑥 } ) = ( { 𝑥 ∈ On ∣ ∀ 𝑎 ∈ 𝐴 ( 𝑎 +no 𝐵 ) ∈ 𝑥 } ∩ { 𝑥 ∈ On ∣ ∀ 𝑏 ∈ 𝐵 ( 𝐴 +no 𝑏 ) ∈ 𝑥 } ) |
4 |
2 3
|
eqtr3i |
⊢ { 𝑥 ∈ On ∣ ( ∀ 𝑏 ∈ 𝐵 ( 𝐴 +no 𝑏 ) ∈ 𝑥 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝑎 +no 𝐵 ) ∈ 𝑥 ) } = ( { 𝑥 ∈ On ∣ ∀ 𝑎 ∈ 𝐴 ( 𝑎 +no 𝐵 ) ∈ 𝑥 } ∩ { 𝑥 ∈ On ∣ ∀ 𝑏 ∈ 𝐵 ( 𝐴 +no 𝑏 ) ∈ 𝑥 } ) |
5 |
4
|
inteqi |
⊢ ∩ { 𝑥 ∈ On ∣ ( ∀ 𝑏 ∈ 𝐵 ( 𝐴 +no 𝑏 ) ∈ 𝑥 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝑎 +no 𝐵 ) ∈ 𝑥 ) } = ∩ ( { 𝑥 ∈ On ∣ ∀ 𝑎 ∈ 𝐴 ( 𝑎 +no 𝐵 ) ∈ 𝑥 } ∩ { 𝑥 ∈ On ∣ ∀ 𝑏 ∈ 𝐵 ( 𝐴 +no 𝑏 ) ∈ 𝑥 } ) |
6 |
1 5
|
eqtrdi |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +no 𝐵 ) = ∩ ( { 𝑥 ∈ On ∣ ∀ 𝑎 ∈ 𝐴 ( 𝑎 +no 𝐵 ) ∈ 𝑥 } ∩ { 𝑥 ∈ On ∣ ∀ 𝑏 ∈ 𝐵 ( 𝐴 +no 𝑏 ) ∈ 𝑥 } ) ) |