| Step | Hyp | Ref | Expression | 
						
							| 1 |  | naddov2 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  +no  𝐵 )  =  ∩  { 𝑥  ∈  On  ∣  ( ∀ 𝑏  ∈  𝐵 ( 𝐴  +no  𝑏 )  ∈  𝑥  ∧  ∀ 𝑎  ∈  𝐴 ( 𝑎  +no  𝐵 )  ∈  𝑥 ) } ) | 
						
							| 2 |  | inrab | ⊢ ( { 𝑥  ∈  On  ∣  ∀ 𝑏  ∈  𝐵 ( 𝐴  +no  𝑏 )  ∈  𝑥 }  ∩  { 𝑥  ∈  On  ∣  ∀ 𝑎  ∈  𝐴 ( 𝑎  +no  𝐵 )  ∈  𝑥 } )  =  { 𝑥  ∈  On  ∣  ( ∀ 𝑏  ∈  𝐵 ( 𝐴  +no  𝑏 )  ∈  𝑥  ∧  ∀ 𝑎  ∈  𝐴 ( 𝑎  +no  𝐵 )  ∈  𝑥 ) } | 
						
							| 3 |  | incom | ⊢ ( { 𝑥  ∈  On  ∣  ∀ 𝑏  ∈  𝐵 ( 𝐴  +no  𝑏 )  ∈  𝑥 }  ∩  { 𝑥  ∈  On  ∣  ∀ 𝑎  ∈  𝐴 ( 𝑎  +no  𝐵 )  ∈  𝑥 } )  =  ( { 𝑥  ∈  On  ∣  ∀ 𝑎  ∈  𝐴 ( 𝑎  +no  𝐵 )  ∈  𝑥 }  ∩  { 𝑥  ∈  On  ∣  ∀ 𝑏  ∈  𝐵 ( 𝐴  +no  𝑏 )  ∈  𝑥 } ) | 
						
							| 4 | 2 3 | eqtr3i | ⊢ { 𝑥  ∈  On  ∣  ( ∀ 𝑏  ∈  𝐵 ( 𝐴  +no  𝑏 )  ∈  𝑥  ∧  ∀ 𝑎  ∈  𝐴 ( 𝑎  +no  𝐵 )  ∈  𝑥 ) }  =  ( { 𝑥  ∈  On  ∣  ∀ 𝑎  ∈  𝐴 ( 𝑎  +no  𝐵 )  ∈  𝑥 }  ∩  { 𝑥  ∈  On  ∣  ∀ 𝑏  ∈  𝐵 ( 𝐴  +no  𝑏 )  ∈  𝑥 } ) | 
						
							| 5 | 4 | inteqi | ⊢ ∩  { 𝑥  ∈  On  ∣  ( ∀ 𝑏  ∈  𝐵 ( 𝐴  +no  𝑏 )  ∈  𝑥  ∧  ∀ 𝑎  ∈  𝐴 ( 𝑎  +no  𝐵 )  ∈  𝑥 ) }  =  ∩  ( { 𝑥  ∈  On  ∣  ∀ 𝑎  ∈  𝐴 ( 𝑎  +no  𝐵 )  ∈  𝑥 }  ∩  { 𝑥  ∈  On  ∣  ∀ 𝑏  ∈  𝐵 ( 𝐴  +no  𝑏 )  ∈  𝑥 } ) | 
						
							| 6 | 1 5 | eqtrdi | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  +no  𝐵 )  =  ∩  ( { 𝑥  ∈  On  ∣  ∀ 𝑎  ∈  𝐴 ( 𝑎  +no  𝐵 )  ∈  𝑥 }  ∩  { 𝑥  ∈  On  ∣  ∀ 𝑏  ∈  𝐵 ( 𝐴  +no  𝑏 )  ∈  𝑥 } ) ) |