Metamath Proof Explorer


Theorem naddov4

Description: Alternate expression for natural addition. (Contributed by RP, 19-Dec-2024)

Ref Expression
Assertion naddov4 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +no 𝐵 ) = ( { 𝑥 ∈ On ∣ ∀ 𝑎𝐴 ( 𝑎 +no 𝐵 ) ∈ 𝑥 } ∩ { 𝑥 ∈ On ∣ ∀ 𝑏𝐵 ( 𝐴 +no 𝑏 ) ∈ 𝑥 } ) )

Proof

Step Hyp Ref Expression
1 naddov2 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +no 𝐵 ) = { 𝑥 ∈ On ∣ ( ∀ 𝑏𝐵 ( 𝐴 +no 𝑏 ) ∈ 𝑥 ∧ ∀ 𝑎𝐴 ( 𝑎 +no 𝐵 ) ∈ 𝑥 ) } )
2 inrab ( { 𝑥 ∈ On ∣ ∀ 𝑏𝐵 ( 𝐴 +no 𝑏 ) ∈ 𝑥 } ∩ { 𝑥 ∈ On ∣ ∀ 𝑎𝐴 ( 𝑎 +no 𝐵 ) ∈ 𝑥 } ) = { 𝑥 ∈ On ∣ ( ∀ 𝑏𝐵 ( 𝐴 +no 𝑏 ) ∈ 𝑥 ∧ ∀ 𝑎𝐴 ( 𝑎 +no 𝐵 ) ∈ 𝑥 ) }
3 incom ( { 𝑥 ∈ On ∣ ∀ 𝑏𝐵 ( 𝐴 +no 𝑏 ) ∈ 𝑥 } ∩ { 𝑥 ∈ On ∣ ∀ 𝑎𝐴 ( 𝑎 +no 𝐵 ) ∈ 𝑥 } ) = ( { 𝑥 ∈ On ∣ ∀ 𝑎𝐴 ( 𝑎 +no 𝐵 ) ∈ 𝑥 } ∩ { 𝑥 ∈ On ∣ ∀ 𝑏𝐵 ( 𝐴 +no 𝑏 ) ∈ 𝑥 } )
4 2 3 eqtr3i { 𝑥 ∈ On ∣ ( ∀ 𝑏𝐵 ( 𝐴 +no 𝑏 ) ∈ 𝑥 ∧ ∀ 𝑎𝐴 ( 𝑎 +no 𝐵 ) ∈ 𝑥 ) } = ( { 𝑥 ∈ On ∣ ∀ 𝑎𝐴 ( 𝑎 +no 𝐵 ) ∈ 𝑥 } ∩ { 𝑥 ∈ On ∣ ∀ 𝑏𝐵 ( 𝐴 +no 𝑏 ) ∈ 𝑥 } )
5 4 inteqi { 𝑥 ∈ On ∣ ( ∀ 𝑏𝐵 ( 𝐴 +no 𝑏 ) ∈ 𝑥 ∧ ∀ 𝑎𝐴 ( 𝑎 +no 𝐵 ) ∈ 𝑥 ) } = ( { 𝑥 ∈ On ∣ ∀ 𝑎𝐴 ( 𝑎 +no 𝐵 ) ∈ 𝑥 } ∩ { 𝑥 ∈ On ∣ ∀ 𝑏𝐵 ( 𝐴 +no 𝑏 ) ∈ 𝑥 } )
6 1 5 eqtrdi ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +no 𝐵 ) = ( { 𝑥 ∈ On ∣ ∀ 𝑎𝐴 ( 𝑎 +no 𝐵 ) ∈ 𝑥 } ∩ { 𝑥 ∈ On ∣ ∀ 𝑏𝐵 ( 𝐴 +no 𝑏 ) ∈ 𝑥 } ) )