| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpll1 |
⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) → Ord 𝐴 ) |
| 2 |
|
simplr |
⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) → 𝑦 ∈ 𝐴 ) |
| 3 |
|
ordelss |
⊢ ( ( Ord 𝐴 ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ⊆ 𝐴 ) |
| 4 |
1 2 3
|
syl2anc |
⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) → 𝑦 ⊆ 𝐴 ) |
| 5 |
|
simpll3 |
⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) → 𝐶 ∈ On ) |
| 6 |
5
|
adantr |
⊢ ( ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑦 ) → 𝐶 ∈ On ) |
| 7 |
|
simpr |
⊢ ( ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑦 ) → 𝑥 ∈ 𝑦 ) |
| 8 |
1
|
adantr |
⊢ ( ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑦 ) → Ord 𝐴 ) |
| 9 |
|
simpllr |
⊢ ( ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑦 ) → 𝑦 ∈ 𝐴 ) |
| 10 |
|
ordelon |
⊢ ( ( Ord 𝐴 ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ On ) |
| 11 |
8 9 10
|
syl2anc |
⊢ ( ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑦 ) → 𝑦 ∈ On ) |
| 12 |
|
onelon |
⊢ ( ( 𝑦 ∈ On ∧ 𝑥 ∈ 𝑦 ) → 𝑥 ∈ On ) |
| 13 |
11 7 12
|
syl2anc |
⊢ ( ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑦 ) → 𝑥 ∈ On ) |
| 14 |
|
simpll2 |
⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) → 𝐵 ∈ On ) |
| 15 |
14
|
adantr |
⊢ ( ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑦 ) → 𝐵 ∈ On ) |
| 16 |
|
naddel2 |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑥 ∈ 𝑦 ↔ ( 𝐵 +no 𝑥 ) ∈ ( 𝐵 +no 𝑦 ) ) ) |
| 17 |
13 11 15 16
|
syl3anc |
⊢ ( ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑦 ) → ( 𝑥 ∈ 𝑦 ↔ ( 𝐵 +no 𝑥 ) ∈ ( 𝐵 +no 𝑦 ) ) ) |
| 18 |
7 17
|
mpbid |
⊢ ( ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑦 ) → ( 𝐵 +no 𝑥 ) ∈ ( 𝐵 +no 𝑦 ) ) |
| 19 |
|
simplr |
⊢ ( ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑦 ) → ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) |
| 20 |
18 19
|
jca |
⊢ ( ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑦 ) → ( ( 𝐵 +no 𝑥 ) ∈ ( 𝐵 +no 𝑦 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) ) |
| 21 |
|
ontr1 |
⊢ ( 𝐶 ∈ On → ( ( ( 𝐵 +no 𝑥 ) ∈ ( 𝐵 +no 𝑦 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) → ( 𝐵 +no 𝑥 ) ∈ 𝐶 ) ) |
| 22 |
6 20 21
|
sylc |
⊢ ( ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑦 ) → ( 𝐵 +no 𝑥 ) ∈ 𝐶 ) |
| 23 |
4 22
|
ssrabdv |
⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) → 𝑦 ⊆ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ) |
| 24 |
23
|
ex |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐵 +no 𝑦 ) ∈ 𝐶 → 𝑦 ⊆ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ) ) |
| 25 |
24
|
ralrimiva |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ∀ 𝑦 ∈ 𝐴 ( ( 𝐵 +no 𝑦 ) ∈ 𝐶 → 𝑦 ⊆ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ) ) |
| 26 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 +no 𝑥 ) = ( 𝐵 +no 𝑦 ) ) |
| 27 |
26
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐵 +no 𝑥 ) ∈ 𝐶 ↔ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) ) |
| 28 |
27
|
ralrab |
⊢ ( ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } 𝑦 ⊆ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ↔ ∀ 𝑦 ∈ 𝐴 ( ( 𝐵 +no 𝑦 ) ∈ 𝐶 → 𝑦 ⊆ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ) ) |
| 29 |
25 28
|
sylibr |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } 𝑦 ⊆ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ) |
| 30 |
|
dftr3 |
⊢ ( Tr { 𝑥 ∈ 𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ↔ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } 𝑦 ⊆ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ) |
| 31 |
29 30
|
sylibr |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → Tr { 𝑥 ∈ 𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ) |