Metamath Proof Explorer


Theorem nadd2rabtr

Description: The set of ordinals which have a natural sum less than some ordinal is transitive. (Contributed by RP, 20-Dec-2024)

Ref Expression
Assertion nadd2rabtr ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) → Tr { 𝑥𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } )

Proof

Step Hyp Ref Expression
1 simpll1 ( ( ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) → Ord 𝐴 )
2 simplr ( ( ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) → 𝑦𝐴 )
3 ordelss ( ( Ord 𝐴𝑦𝐴 ) → 𝑦𝐴 )
4 1 2 3 syl2anc ( ( ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) → 𝑦𝐴 )
5 simpll3 ( ( ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) → 𝐶 ∈ On )
6 5 adantr ( ( ( ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) ∧ 𝑥𝑦 ) → 𝐶 ∈ On )
7 simpr ( ( ( ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) ∧ 𝑥𝑦 ) → 𝑥𝑦 )
8 1 adantr ( ( ( ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) ∧ 𝑥𝑦 ) → Ord 𝐴 )
9 simpllr ( ( ( ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) ∧ 𝑥𝑦 ) → 𝑦𝐴 )
10 ordelon ( ( Ord 𝐴𝑦𝐴 ) → 𝑦 ∈ On )
11 8 9 10 syl2anc ( ( ( ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) ∧ 𝑥𝑦 ) → 𝑦 ∈ On )
12 onelon ( ( 𝑦 ∈ On ∧ 𝑥𝑦 ) → 𝑥 ∈ On )
13 11 7 12 syl2anc ( ( ( ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) ∧ 𝑥𝑦 ) → 𝑥 ∈ On )
14 simpll2 ( ( ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) → 𝐵 ∈ On )
15 14 adantr ( ( ( ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) ∧ 𝑥𝑦 ) → 𝐵 ∈ On )
16 naddel2 ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑥𝑦 ↔ ( 𝐵 +no 𝑥 ) ∈ ( 𝐵 +no 𝑦 ) ) )
17 13 11 15 16 syl3anc ( ( ( ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) ∧ 𝑥𝑦 ) → ( 𝑥𝑦 ↔ ( 𝐵 +no 𝑥 ) ∈ ( 𝐵 +no 𝑦 ) ) )
18 7 17 mpbid ( ( ( ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) ∧ 𝑥𝑦 ) → ( 𝐵 +no 𝑥 ) ∈ ( 𝐵 +no 𝑦 ) )
19 simplr ( ( ( ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) ∧ 𝑥𝑦 ) → ( 𝐵 +no 𝑦 ) ∈ 𝐶 )
20 18 19 jca ( ( ( ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) ∧ 𝑥𝑦 ) → ( ( 𝐵 +no 𝑥 ) ∈ ( 𝐵 +no 𝑦 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) )
21 ontr1 ( 𝐶 ∈ On → ( ( ( 𝐵 +no 𝑥 ) ∈ ( 𝐵 +no 𝑦 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) → ( 𝐵 +no 𝑥 ) ∈ 𝐶 ) )
22 6 20 21 sylc ( ( ( ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) ∧ 𝑥𝑦 ) → ( 𝐵 +no 𝑥 ) ∈ 𝐶 )
23 4 22 ssrabdv ( ( ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) → 𝑦 ⊆ { 𝑥𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } )
24 23 ex ( ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦𝐴 ) → ( ( 𝐵 +no 𝑦 ) ∈ 𝐶𝑦 ⊆ { 𝑥𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ) )
25 24 ralrimiva ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) → ∀ 𝑦𝐴 ( ( 𝐵 +no 𝑦 ) ∈ 𝐶𝑦 ⊆ { 𝑥𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ) )
26 oveq2 ( 𝑥 = 𝑦 → ( 𝐵 +no 𝑥 ) = ( 𝐵 +no 𝑦 ) )
27 26 eleq1d ( 𝑥 = 𝑦 → ( ( 𝐵 +no 𝑥 ) ∈ 𝐶 ↔ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) )
28 27 ralrab ( ∀ 𝑦 ∈ { 𝑥𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } 𝑦 ⊆ { 𝑥𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ↔ ∀ 𝑦𝐴 ( ( 𝐵 +no 𝑦 ) ∈ 𝐶𝑦 ⊆ { 𝑥𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ) )
29 25 28 sylibr ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) → ∀ 𝑦 ∈ { 𝑥𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } 𝑦 ⊆ { 𝑥𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } )
30 dftr3 ( Tr { 𝑥𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ↔ ∀ 𝑦 ∈ { 𝑥𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } 𝑦 ⊆ { 𝑥𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } )
31 29 30 sylibr ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) → Tr { 𝑥𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } )