Step |
Hyp |
Ref |
Expression |
1 |
|
simpll1 |
⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) → Ord 𝐴 ) |
2 |
|
simplr |
⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) → 𝑦 ∈ 𝐴 ) |
3 |
|
ordelss |
⊢ ( ( Ord 𝐴 ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ⊆ 𝐴 ) |
4 |
1 2 3
|
syl2anc |
⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) → 𝑦 ⊆ 𝐴 ) |
5 |
|
simpll3 |
⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) → 𝐶 ∈ On ) |
6 |
5
|
adantr |
⊢ ( ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑦 ) → 𝐶 ∈ On ) |
7 |
|
simpr |
⊢ ( ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑦 ) → 𝑥 ∈ 𝑦 ) |
8 |
1
|
adantr |
⊢ ( ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑦 ) → Ord 𝐴 ) |
9 |
|
simpllr |
⊢ ( ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑦 ) → 𝑦 ∈ 𝐴 ) |
10 |
|
ordelon |
⊢ ( ( Ord 𝐴 ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ On ) |
11 |
8 9 10
|
syl2anc |
⊢ ( ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑦 ) → 𝑦 ∈ On ) |
12 |
|
onelon |
⊢ ( ( 𝑦 ∈ On ∧ 𝑥 ∈ 𝑦 ) → 𝑥 ∈ On ) |
13 |
11 7 12
|
syl2anc |
⊢ ( ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑦 ) → 𝑥 ∈ On ) |
14 |
|
simpll2 |
⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) → 𝐵 ∈ On ) |
15 |
14
|
adantr |
⊢ ( ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑦 ) → 𝐵 ∈ On ) |
16 |
|
naddel2 |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑥 ∈ 𝑦 ↔ ( 𝐵 +no 𝑥 ) ∈ ( 𝐵 +no 𝑦 ) ) ) |
17 |
13 11 15 16
|
syl3anc |
⊢ ( ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑦 ) → ( 𝑥 ∈ 𝑦 ↔ ( 𝐵 +no 𝑥 ) ∈ ( 𝐵 +no 𝑦 ) ) ) |
18 |
7 17
|
mpbid |
⊢ ( ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑦 ) → ( 𝐵 +no 𝑥 ) ∈ ( 𝐵 +no 𝑦 ) ) |
19 |
|
simplr |
⊢ ( ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑦 ) → ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) |
20 |
18 19
|
jca |
⊢ ( ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑦 ) → ( ( 𝐵 +no 𝑥 ) ∈ ( 𝐵 +no 𝑦 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) ) |
21 |
|
ontr1 |
⊢ ( 𝐶 ∈ On → ( ( ( 𝐵 +no 𝑥 ) ∈ ( 𝐵 +no 𝑦 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) → ( 𝐵 +no 𝑥 ) ∈ 𝐶 ) ) |
22 |
6 20 21
|
sylc |
⊢ ( ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑦 ) → ( 𝐵 +no 𝑥 ) ∈ 𝐶 ) |
23 |
4 22
|
ssrabdv |
⊢ ( ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) → 𝑦 ⊆ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ) |
24 |
23
|
ex |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐵 +no 𝑦 ) ∈ 𝐶 → 𝑦 ⊆ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ) ) |
25 |
24
|
ralrimiva |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ∀ 𝑦 ∈ 𝐴 ( ( 𝐵 +no 𝑦 ) ∈ 𝐶 → 𝑦 ⊆ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ) ) |
26 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 +no 𝑥 ) = ( 𝐵 +no 𝑦 ) ) |
27 |
26
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐵 +no 𝑥 ) ∈ 𝐶 ↔ ( 𝐵 +no 𝑦 ) ∈ 𝐶 ) ) |
28 |
27
|
ralrab |
⊢ ( ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } 𝑦 ⊆ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ↔ ∀ 𝑦 ∈ 𝐴 ( ( 𝐵 +no 𝑦 ) ∈ 𝐶 → 𝑦 ⊆ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ) ) |
29 |
25 28
|
sylibr |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } 𝑦 ⊆ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ) |
30 |
|
dftr3 |
⊢ ( Tr { 𝑥 ∈ 𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ↔ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } 𝑦 ⊆ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ) |
31 |
29 30
|
sylibr |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → Tr { 𝑥 ∈ 𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ) |