| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpll1 | ⊢ ( ( ( ( Ord  𝐴  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐵  +no  𝑦 )  ∈  𝐶 )  →  Ord  𝐴 ) | 
						
							| 2 |  | simplr | ⊢ ( ( ( ( Ord  𝐴  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐵  +no  𝑦 )  ∈  𝐶 )  →  𝑦  ∈  𝐴 ) | 
						
							| 3 |  | ordelss | ⊢ ( ( Ord  𝐴  ∧  𝑦  ∈  𝐴 )  →  𝑦  ⊆  𝐴 ) | 
						
							| 4 | 1 2 3 | syl2anc | ⊢ ( ( ( ( Ord  𝐴  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐵  +no  𝑦 )  ∈  𝐶 )  →  𝑦  ⊆  𝐴 ) | 
						
							| 5 |  | simpll3 | ⊢ ( ( ( ( Ord  𝐴  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐵  +no  𝑦 )  ∈  𝐶 )  →  𝐶  ∈  On ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( ( ( ( Ord  𝐴  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐵  +no  𝑦 )  ∈  𝐶 )  ∧  𝑥  ∈  𝑦 )  →  𝐶  ∈  On ) | 
						
							| 7 |  | simpr | ⊢ ( ( ( ( ( Ord  𝐴  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐵  +no  𝑦 )  ∈  𝐶 )  ∧  𝑥  ∈  𝑦 )  →  𝑥  ∈  𝑦 ) | 
						
							| 8 | 1 | adantr | ⊢ ( ( ( ( ( Ord  𝐴  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐵  +no  𝑦 )  ∈  𝐶 )  ∧  𝑥  ∈  𝑦 )  →  Ord  𝐴 ) | 
						
							| 9 |  | simpllr | ⊢ ( ( ( ( ( Ord  𝐴  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐵  +no  𝑦 )  ∈  𝐶 )  ∧  𝑥  ∈  𝑦 )  →  𝑦  ∈  𝐴 ) | 
						
							| 10 |  | ordelon | ⊢ ( ( Ord  𝐴  ∧  𝑦  ∈  𝐴 )  →  𝑦  ∈  On ) | 
						
							| 11 | 8 9 10 | syl2anc | ⊢ ( ( ( ( ( Ord  𝐴  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐵  +no  𝑦 )  ∈  𝐶 )  ∧  𝑥  ∈  𝑦 )  →  𝑦  ∈  On ) | 
						
							| 12 |  | onelon | ⊢ ( ( 𝑦  ∈  On  ∧  𝑥  ∈  𝑦 )  →  𝑥  ∈  On ) | 
						
							| 13 | 11 7 12 | syl2anc | ⊢ ( ( ( ( ( Ord  𝐴  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐵  +no  𝑦 )  ∈  𝐶 )  ∧  𝑥  ∈  𝑦 )  →  𝑥  ∈  On ) | 
						
							| 14 |  | simpll2 | ⊢ ( ( ( ( Ord  𝐴  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐵  +no  𝑦 )  ∈  𝐶 )  →  𝐵  ∈  On ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( ( ( ( Ord  𝐴  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐵  +no  𝑦 )  ∈  𝐶 )  ∧  𝑥  ∈  𝑦 )  →  𝐵  ∈  On ) | 
						
							| 16 |  | naddel2 | ⊢ ( ( 𝑥  ∈  On  ∧  𝑦  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝑥  ∈  𝑦  ↔  ( 𝐵  +no  𝑥 )  ∈  ( 𝐵  +no  𝑦 ) ) ) | 
						
							| 17 | 13 11 15 16 | syl3anc | ⊢ ( ( ( ( ( Ord  𝐴  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐵  +no  𝑦 )  ∈  𝐶 )  ∧  𝑥  ∈  𝑦 )  →  ( 𝑥  ∈  𝑦  ↔  ( 𝐵  +no  𝑥 )  ∈  ( 𝐵  +no  𝑦 ) ) ) | 
						
							| 18 | 7 17 | mpbid | ⊢ ( ( ( ( ( Ord  𝐴  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐵  +no  𝑦 )  ∈  𝐶 )  ∧  𝑥  ∈  𝑦 )  →  ( 𝐵  +no  𝑥 )  ∈  ( 𝐵  +no  𝑦 ) ) | 
						
							| 19 |  | simplr | ⊢ ( ( ( ( ( Ord  𝐴  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐵  +no  𝑦 )  ∈  𝐶 )  ∧  𝑥  ∈  𝑦 )  →  ( 𝐵  +no  𝑦 )  ∈  𝐶 ) | 
						
							| 20 | 18 19 | jca | ⊢ ( ( ( ( ( Ord  𝐴  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐵  +no  𝑦 )  ∈  𝐶 )  ∧  𝑥  ∈  𝑦 )  →  ( ( 𝐵  +no  𝑥 )  ∈  ( 𝐵  +no  𝑦 )  ∧  ( 𝐵  +no  𝑦 )  ∈  𝐶 ) ) | 
						
							| 21 |  | ontr1 | ⊢ ( 𝐶  ∈  On  →  ( ( ( 𝐵  +no  𝑥 )  ∈  ( 𝐵  +no  𝑦 )  ∧  ( 𝐵  +no  𝑦 )  ∈  𝐶 )  →  ( 𝐵  +no  𝑥 )  ∈  𝐶 ) ) | 
						
							| 22 | 6 20 21 | sylc | ⊢ ( ( ( ( ( Ord  𝐴  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐵  +no  𝑦 )  ∈  𝐶 )  ∧  𝑥  ∈  𝑦 )  →  ( 𝐵  +no  𝑥 )  ∈  𝐶 ) | 
						
							| 23 | 4 22 | ssrabdv | ⊢ ( ( ( ( Ord  𝐴  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐵  +no  𝑦 )  ∈  𝐶 )  →  𝑦  ⊆  { 𝑥  ∈  𝐴  ∣  ( 𝐵  +no  𝑥 )  ∈  𝐶 } ) | 
						
							| 24 | 23 | ex | ⊢ ( ( ( Ord  𝐴  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  𝑦  ∈  𝐴 )  →  ( ( 𝐵  +no  𝑦 )  ∈  𝐶  →  𝑦  ⊆  { 𝑥  ∈  𝐴  ∣  ( 𝐵  +no  𝑥 )  ∈  𝐶 } ) ) | 
						
							| 25 | 24 | ralrimiva | ⊢ ( ( Ord  𝐴  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ∀ 𝑦  ∈  𝐴 ( ( 𝐵  +no  𝑦 )  ∈  𝐶  →  𝑦  ⊆  { 𝑥  ∈  𝐴  ∣  ( 𝐵  +no  𝑥 )  ∈  𝐶 } ) ) | 
						
							| 26 |  | oveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐵  +no  𝑥 )  =  ( 𝐵  +no  𝑦 ) ) | 
						
							| 27 | 26 | eleq1d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐵  +no  𝑥 )  ∈  𝐶  ↔  ( 𝐵  +no  𝑦 )  ∈  𝐶 ) ) | 
						
							| 28 | 27 | ralrab | ⊢ ( ∀ 𝑦  ∈  { 𝑥  ∈  𝐴  ∣  ( 𝐵  +no  𝑥 )  ∈  𝐶 } 𝑦  ⊆  { 𝑥  ∈  𝐴  ∣  ( 𝐵  +no  𝑥 )  ∈  𝐶 }  ↔  ∀ 𝑦  ∈  𝐴 ( ( 𝐵  +no  𝑦 )  ∈  𝐶  →  𝑦  ⊆  { 𝑥  ∈  𝐴  ∣  ( 𝐵  +no  𝑥 )  ∈  𝐶 } ) ) | 
						
							| 29 | 25 28 | sylibr | ⊢ ( ( Ord  𝐴  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ∀ 𝑦  ∈  { 𝑥  ∈  𝐴  ∣  ( 𝐵  +no  𝑥 )  ∈  𝐶 } 𝑦  ⊆  { 𝑥  ∈  𝐴  ∣  ( 𝐵  +no  𝑥 )  ∈  𝐶 } ) | 
						
							| 30 |  | dftr3 | ⊢ ( Tr  { 𝑥  ∈  𝐴  ∣  ( 𝐵  +no  𝑥 )  ∈  𝐶 }  ↔  ∀ 𝑦  ∈  { 𝑥  ∈  𝐴  ∣  ( 𝐵  +no  𝑥 )  ∈  𝐶 } 𝑦  ⊆  { 𝑥  ∈  𝐴  ∣  ( 𝐵  +no  𝑥 )  ∈  𝐶 } ) | 
						
							| 31 | 29 30 | sylibr | ⊢ ( ( Ord  𝐴  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  Tr  { 𝑥  ∈  𝐴  ∣  ( 𝐵  +no  𝑥 )  ∈  𝐶 } ) |