Metamath Proof Explorer


Theorem nadd2rabord

Description: The set of ordinals which have a natural sum less than some ordinal is an ordinal. (Contributed by RP, 20-Dec-2024)

Ref Expression
Assertion nadd2rabord ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) → Ord { 𝑥𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } )

Proof

Step Hyp Ref Expression
1 ssrab2 { 𝑥𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ⊆ 𝐴
2 ordsson ( Ord 𝐴𝐴 ⊆ On )
3 2 3ad2ant1 ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) → 𝐴 ⊆ On )
4 1 3 sstrid ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) → { 𝑥𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ⊆ On )
5 nadd2rabtr ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) → Tr { 𝑥𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } )
6 dford5 ( Ord { 𝑥𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ↔ ( { 𝑥𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ⊆ On ∧ Tr { 𝑥𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ) )
7 4 5 6 sylanbrc ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) → Ord { 𝑥𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } )