Step |
Hyp |
Ref |
Expression |
1 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ⊆ 𝐴 |
2 |
|
ordsson |
⊢ ( Ord 𝐴 → 𝐴 ⊆ On ) |
3 |
2
|
3ad2ant1 |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → 𝐴 ⊆ On ) |
4 |
1 3
|
sstrid |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → { 𝑥 ∈ 𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ⊆ On ) |
5 |
|
nadd2rabtr |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → Tr { 𝑥 ∈ 𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ) |
6 |
|
dford5 |
⊢ ( Ord { 𝑥 ∈ 𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ↔ ( { 𝑥 ∈ 𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ⊆ On ∧ Tr { 𝑥 ∈ 𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ) ) |
7 |
4 5 6
|
sylanbrc |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → Ord { 𝑥 ∈ 𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ) |