Metamath Proof Explorer


Theorem nadd2rabord

Description: The set of ordinals which have a natural sum less than some ordinal is an ordinal. (Contributed by RP, 20-Dec-2024)

Ref Expression
Assertion nadd2rabord Could not format assertion : No typesetting found for |- ( ( Ord A /\ B e. On /\ C e. On ) -> Ord { x e. A | ( B +no x ) e. C } ) with typecode |-

Proof

Step Hyp Ref Expression
1 ssrab2 Could not format { x e. A | ( B +no x ) e. C } C_ A : No typesetting found for |- { x e. A | ( B +no x ) e. C } C_ A with typecode |-
2 ordsson OrdAAOn
3 2 3ad2ant1 OrdABOnCOnAOn
4 1 3 sstrid Could not format ( ( Ord A /\ B e. On /\ C e. On ) -> { x e. A | ( B +no x ) e. C } C_ On ) : No typesetting found for |- ( ( Ord A /\ B e. On /\ C e. On ) -> { x e. A | ( B +no x ) e. C } C_ On ) with typecode |-
5 nadd2rabtr Could not format ( ( Ord A /\ B e. On /\ C e. On ) -> Tr { x e. A | ( B +no x ) e. C } ) : No typesetting found for |- ( ( Ord A /\ B e. On /\ C e. On ) -> Tr { x e. A | ( B +no x ) e. C } ) with typecode |-
6 dford5 Could not format ( Ord { x e. A | ( B +no x ) e. C } <-> ( { x e. A | ( B +no x ) e. C } C_ On /\ Tr { x e. A | ( B +no x ) e. C } ) ) : No typesetting found for |- ( Ord { x e. A | ( B +no x ) e. C } <-> ( { x e. A | ( B +no x ) e. C } C_ On /\ Tr { x e. A | ( B +no x ) e. C } ) ) with typecode |-
7 4 5 6 sylanbrc Could not format ( ( Ord A /\ B e. On /\ C e. On ) -> Ord { x e. A | ( B +no x ) e. C } ) : No typesetting found for |- ( ( Ord A /\ B e. On /\ C e. On ) -> Ord { x e. A | ( B +no x ) e. C } ) with typecode |-