Metamath Proof Explorer


Theorem nadd2rabex

Description: The class of ordinals which have a natural sum less than some ordinal is a set. (Contributed by RP, 20-Dec-2024)

Ref Expression
Assertion nadd2rabex Ord A B On C On x A | B + x C V

Proof

Step Hyp Ref Expression
1 simp3 Ord A B On C On C On
2 0elon On
3 ordelon Ord A x A x On
4 3 3ad2antl1 Ord A B On C On x A x On
5 naddcom On x On + x = x +
6 2 4 5 sylancr Ord A B On C On x A + x = x +
7 naddrid x On x + = x
8 4 7 syl Ord A B On C On x A x + = x
9 6 8 eqtrd Ord A B On C On x A + x = x
10 0ss B
11 simpl2 Ord A B On C On x A B On
12 naddssim On B On x On B + x B + x
13 2 11 4 12 mp3an2i Ord A B On C On x A B + x B + x
14 10 13 mpi Ord A B On C On x A + x B + x
15 9 14 eqsstrrd Ord A B On C On x A x B + x
16 simpl3 Ord A B On C On x A C On
17 ontr2 x On C On x B + x B + x C x C
18 4 16 17 syl2anc Ord A B On C On x A x B + x B + x C x C
19 15 18 mpand Ord A B On C On x A B + x C x C
20 19 3impia Ord A B On C On x A B + x C x C
21 20 rabssdv Ord A B On C On x A | B + x C C
22 1 21 ssexd Ord A B On C On x A | B + x C V