| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|
| 2 |
|
oveq2 |
|
| 3 |
1 2
|
sseq12d |
|
| 4 |
3
|
imbi2d |
|
| 5 |
4
|
imbi2d |
|
| 6 |
|
oveq2 |
|
| 7 |
|
oveq2 |
|
| 8 |
6 7
|
sseq12d |
|
| 9 |
8
|
imbi2d |
|
| 10 |
9
|
imbi2d |
|
| 11 |
|
r19.21v |
|
| 12 |
|
r19.21v |
|
| 13 |
12
|
imbi2i |
|
| 14 |
11 13
|
bitri |
|
| 15 |
|
oveq2 |
|
| 16 |
|
oveq2 |
|
| 17 |
15 16
|
sseq12d |
|
| 18 |
17
|
rspccva |
|
| 19 |
18
|
ad4ant24 |
|
| 20 |
|
simprrl |
|
| 21 |
|
oveq2 |
|
| 22 |
21
|
eleq1d |
|
| 23 |
22
|
rspccva |
|
| 24 |
20 23
|
sylan |
|
| 25 |
|
simplrl |
|
| 26 |
25
|
adantr |
|
| 27 |
26
|
adantr |
|
| 28 |
27
|
adantr |
|
| 29 |
|
simp-4l |
|
| 30 |
|
onelon |
|
| 31 |
29 30
|
sylan |
|
| 32 |
|
naddcl |
|
| 33 |
28 31 32
|
syl2anc |
|
| 34 |
|
simplrl |
|
| 35 |
|
ontr2 |
|
| 36 |
33 34 35
|
syl2anc |
|
| 37 |
19 24 36
|
mp2and |
|
| 38 |
37
|
ralrimiva |
|
| 39 |
|
simpllr |
|
| 40 |
|
simprrr |
|
| 41 |
|
ssralv |
|
| 42 |
39 40 41
|
sylc |
|
| 43 |
38 42
|
jca |
|
| 44 |
43
|
expr |
|
| 45 |
44
|
ss2rabdv |
|
| 46 |
|
intss |
|
| 47 |
45 46
|
syl |
|
| 48 |
|
simplll |
|
| 49 |
|
naddov2 |
|
| 50 |
26 48 49
|
syl2anc |
|
| 51 |
|
simplrr |
|
| 52 |
51
|
adantr |
|
| 53 |
|
naddov2 |
|
| 54 |
52 48 53
|
syl2anc |
|
| 55 |
47 50 54
|
3sstr4d |
|
| 56 |
55
|
exp31 |
|
| 57 |
56
|
a2d |
|
| 58 |
57
|
ex |
|
| 59 |
58
|
a2d |
|
| 60 |
14 59
|
biimtrid |
|
| 61 |
5 10 60
|
tfis3 |
|
| 62 |
61
|
com12 |
|
| 63 |
62
|
3impia |
|