Metamath Proof Explorer


Theorem nadd2rabon

Description: The set of ordinals which have a natural sum less than some ordinal is an ordinal number. (Contributed by RP, 20-Dec-2024)

Ref Expression
Assertion nadd2rabon Ord A B On C On x A | B + x C On

Proof

Step Hyp Ref Expression
1 nadd2rabord Ord A B On C On Ord x A | B + x C
2 nadd2rabex Ord A B On C On x A | B + x C V
3 elon2 x A | B + x C On Ord x A | B + x C x A | B + x C V
4 1 2 3 sylanbrc Ord A B On C On x A | B + x C On