Metamath Proof Explorer


Theorem nadd1rabtr

Description: The set of ordinals which have a natural sum less than some ordinal is transitive. (Contributed by RP, 20-Dec-2024)

Ref Expression
Assertion nadd1rabtr Ord A B On C On Tr x A | x + B C

Proof

Step Hyp Ref Expression
1 nadd2rabtr Ord A B On C On Tr x A | B + x C
2 simpl2 Ord A B On C On x A B On
3 ordelon Ord A x A x On
4 3 3ad2antl1 Ord A B On C On x A x On
5 naddcom B On x On B + x = x + B
6 2 4 5 syl2anc Ord A B On C On x A B + x = x + B
7 6 eleq1d Ord A B On C On x A B + x C x + B C
8 7 rabbidva Ord A B On C On x A | B + x C = x A | x + B C
9 treq x A | B + x C = x A | x + B C Tr x A | B + x C Tr x A | x + B C
10 8 9 syl Ord A B On C On Tr x A | B + x C Tr x A | x + B C
11 1 10 mpbid Ord A B On C On Tr x A | x + B C