Metamath Proof Explorer


Theorem nadd1rabord

Description: The set of ordinals which have a natural sum less than some ordinal is an ordinal. (Contributed by RP, 20-Dec-2024)

Ref Expression
Assertion nadd1rabord Ord A B On C On Ord x A | x + B C

Proof

Step Hyp Ref Expression
1 ssrab2 x A | x + B C A
2 ordsson Ord A A On
3 2 3ad2ant1 Ord A B On C On A On
4 1 3 sstrid Ord A B On C On x A | x + B C On
5 nadd1rabtr Ord A B On C On Tr x A | x + B C
6 dford5 Ord x A | x + B C x A | x + B C On Tr x A | x + B C
7 4 5 6 sylanbrc Ord A B On C On Ord x A | x + B C