Metamath Proof Explorer


Theorem nadd1rabex

Description: The class of ordinals which have a natural sum less than some ordinal is a set. (Contributed by RP, 20-Dec-2024)

Ref Expression
Assertion nadd1rabex Ord A B On C On x A | x + B C V

Proof

Step Hyp Ref Expression
1 simpl2 Ord A B On C On x A B On
2 ordelon Ord A x A x On
3 2 3ad2antl1 Ord A B On C On x A x On
4 naddcom B On x On B + x = x + B
5 1 3 4 syl2anc Ord A B On C On x A B + x = x + B
6 5 eleq1d Ord A B On C On x A B + x C x + B C
7 6 rabbidva Ord A B On C On x A | B + x C = x A | x + B C
8 nadd2rabex Ord A B On C On x A | B + x C V
9 7 8 eqeltrrd Ord A B On C On x A | x + B C V