Metamath Proof Explorer


Theorem nadd1rabex

Description: The class of ordinals which have a natural sum less than some ordinal is a set. (Contributed by RP, 20-Dec-2024)

Ref Expression
Assertion nadd1rabex
|- ( ( Ord A /\ B e. On /\ C e. On ) -> { x e. A | ( x +no B ) e. C } e. _V )

Proof

Step Hyp Ref Expression
1 simpl2
 |-  ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> B e. On )
2 ordelon
 |-  ( ( Ord A /\ x e. A ) -> x e. On )
3 2 3ad2antl1
 |-  ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> x e. On )
4 naddcom
 |-  ( ( B e. On /\ x e. On ) -> ( B +no x ) = ( x +no B ) )
5 1 3 4 syl2anc
 |-  ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> ( B +no x ) = ( x +no B ) )
6 5 eleq1d
 |-  ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> ( ( B +no x ) e. C <-> ( x +no B ) e. C ) )
7 6 rabbidva
 |-  ( ( Ord A /\ B e. On /\ C e. On ) -> { x e. A | ( B +no x ) e. C } = { x e. A | ( x +no B ) e. C } )
8 nadd2rabex
 |-  ( ( Ord A /\ B e. On /\ C e. On ) -> { x e. A | ( B +no x ) e. C } e. _V )
9 7 8 eqeltrrd
 |-  ( ( Ord A /\ B e. On /\ C e. On ) -> { x e. A | ( x +no B ) e. C } e. _V )