| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp3 |
|- ( ( Ord A /\ B e. On /\ C e. On ) -> C e. On ) |
| 2 |
|
0elon |
|- (/) e. On |
| 3 |
|
ordelon |
|- ( ( Ord A /\ x e. A ) -> x e. On ) |
| 4 |
3
|
3ad2antl1 |
|- ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> x e. On ) |
| 5 |
|
naddcom |
|- ( ( (/) e. On /\ x e. On ) -> ( (/) +no x ) = ( x +no (/) ) ) |
| 6 |
2 4 5
|
sylancr |
|- ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> ( (/) +no x ) = ( x +no (/) ) ) |
| 7 |
|
naddrid |
|- ( x e. On -> ( x +no (/) ) = x ) |
| 8 |
4 7
|
syl |
|- ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> ( x +no (/) ) = x ) |
| 9 |
6 8
|
eqtrd |
|- ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> ( (/) +no x ) = x ) |
| 10 |
|
0ss |
|- (/) C_ B |
| 11 |
|
simpl2 |
|- ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> B e. On ) |
| 12 |
|
naddssim |
|- ( ( (/) e. On /\ B e. On /\ x e. On ) -> ( (/) C_ B -> ( (/) +no x ) C_ ( B +no x ) ) ) |
| 13 |
2 11 4 12
|
mp3an2i |
|- ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> ( (/) C_ B -> ( (/) +no x ) C_ ( B +no x ) ) ) |
| 14 |
10 13
|
mpi |
|- ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> ( (/) +no x ) C_ ( B +no x ) ) |
| 15 |
9 14
|
eqsstrrd |
|- ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> x C_ ( B +no x ) ) |
| 16 |
|
simpl3 |
|- ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> C e. On ) |
| 17 |
|
ontr2 |
|- ( ( x e. On /\ C e. On ) -> ( ( x C_ ( B +no x ) /\ ( B +no x ) e. C ) -> x e. C ) ) |
| 18 |
4 16 17
|
syl2anc |
|- ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> ( ( x C_ ( B +no x ) /\ ( B +no x ) e. C ) -> x e. C ) ) |
| 19 |
15 18
|
mpand |
|- ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> ( ( B +no x ) e. C -> x e. C ) ) |
| 20 |
19
|
3impia |
|- ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A /\ ( B +no x ) e. C ) -> x e. C ) |
| 21 |
20
|
rabssdv |
|- ( ( Ord A /\ B e. On /\ C e. On ) -> { x e. A | ( B +no x ) e. C } C_ C ) |
| 22 |
1 21
|
ssexd |
|- ( ( Ord A /\ B e. On /\ C e. On ) -> { x e. A | ( B +no x ) e. C } e. _V ) |