| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp3 |  |-  ( ( Ord A /\ B e. On /\ C e. On ) -> C e. On ) | 
						
							| 2 |  | 0elon |  |-  (/) e. On | 
						
							| 3 |  | ordelon |  |-  ( ( Ord A /\ x e. A ) -> x e. On ) | 
						
							| 4 | 3 | 3ad2antl1 |  |-  ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> x e. On ) | 
						
							| 5 |  | naddcom |  |-  ( ( (/) e. On /\ x e. On ) -> ( (/) +no x ) = ( x +no (/) ) ) | 
						
							| 6 | 2 4 5 | sylancr |  |-  ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> ( (/) +no x ) = ( x +no (/) ) ) | 
						
							| 7 |  | naddrid |  |-  ( x e. On -> ( x +no (/) ) = x ) | 
						
							| 8 | 4 7 | syl |  |-  ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> ( x +no (/) ) = x ) | 
						
							| 9 | 6 8 | eqtrd |  |-  ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> ( (/) +no x ) = x ) | 
						
							| 10 |  | 0ss |  |-  (/) C_ B | 
						
							| 11 |  | simpl2 |  |-  ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> B e. On ) | 
						
							| 12 |  | naddssim |  |-  ( ( (/) e. On /\ B e. On /\ x e. On ) -> ( (/) C_ B -> ( (/) +no x ) C_ ( B +no x ) ) ) | 
						
							| 13 | 2 11 4 12 | mp3an2i |  |-  ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> ( (/) C_ B -> ( (/) +no x ) C_ ( B +no x ) ) ) | 
						
							| 14 | 10 13 | mpi |  |-  ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> ( (/) +no x ) C_ ( B +no x ) ) | 
						
							| 15 | 9 14 | eqsstrrd |  |-  ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> x C_ ( B +no x ) ) | 
						
							| 16 |  | simpl3 |  |-  ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> C e. On ) | 
						
							| 17 |  | ontr2 |  |-  ( ( x e. On /\ C e. On ) -> ( ( x C_ ( B +no x ) /\ ( B +no x ) e. C ) -> x e. C ) ) | 
						
							| 18 | 4 16 17 | syl2anc |  |-  ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> ( ( x C_ ( B +no x ) /\ ( B +no x ) e. C ) -> x e. C ) ) | 
						
							| 19 | 15 18 | mpand |  |-  ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> ( ( B +no x ) e. C -> x e. C ) ) | 
						
							| 20 | 19 | 3impia |  |-  ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A /\ ( B +no x ) e. C ) -> x e. C ) | 
						
							| 21 | 20 | rabssdv |  |-  ( ( Ord A /\ B e. On /\ C e. On ) -> { x e. A | ( B +no x ) e. C } C_ C ) | 
						
							| 22 | 1 21 | ssexd |  |-  ( ( Ord A /\ B e. On /\ C e. On ) -> { x e. A | ( B +no x ) e. C } e. _V ) |