Description: The set of ordinals which have a natural sum less than some ordinal is an ordinal number. (Contributed by RP, 20-Dec-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | nadd2rabon | |- ( ( Ord A /\ B e. On /\ C e. On ) -> { x e. A | ( B +no x ) e. C } e. On ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nadd2rabord | |- ( ( Ord A /\ B e. On /\ C e. On ) -> Ord { x e. A | ( B +no x ) e. C } ) |
|
2 | nadd2rabex | |- ( ( Ord A /\ B e. On /\ C e. On ) -> { x e. A | ( B +no x ) e. C } e. _V ) |
|
3 | elon2 | |- ( { x e. A | ( B +no x ) e. C } e. On <-> ( Ord { x e. A | ( B +no x ) e. C } /\ { x e. A | ( B +no x ) e. C } e. _V ) ) |
|
4 | 1 2 3 | sylanbrc | |- ( ( Ord A /\ B e. On /\ C e. On ) -> { x e. A | ( B +no x ) e. C } e. On ) |