Description: The set of ordinals which have a natural sum less than some ordinal is an ordinal number. (Contributed by RP, 20-Dec-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | nadd2rabon | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → { 𝑥 ∈ 𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ∈ On ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nadd2rabord | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → Ord { 𝑥 ∈ 𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ) | |
2 | nadd2rabex | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → { 𝑥 ∈ 𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ∈ V ) | |
3 | elon2 | ⊢ ( { 𝑥 ∈ 𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ∈ On ↔ ( Ord { 𝑥 ∈ 𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ∧ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ∈ V ) ) | |
4 | 1 2 3 | sylanbrc | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → { 𝑥 ∈ 𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ∈ On ) |