| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nadd2rabtr | ⊢ ( ( Ord  𝐴  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  Tr  { 𝑥  ∈  𝐴  ∣  ( 𝐵  +no  𝑥 )  ∈  𝐶 } ) | 
						
							| 2 |  | simpl2 | ⊢ ( ( ( Ord  𝐴  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  On ) | 
						
							| 3 |  | ordelon | ⊢ ( ( Ord  𝐴  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  On ) | 
						
							| 4 | 3 | 3ad2antl1 | ⊢ ( ( ( Ord  𝐴  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  On ) | 
						
							| 5 |  | naddcom | ⊢ ( ( 𝐵  ∈  On  ∧  𝑥  ∈  On )  →  ( 𝐵  +no  𝑥 )  =  ( 𝑥  +no  𝐵 ) ) | 
						
							| 6 | 2 4 5 | syl2anc | ⊢ ( ( ( Ord  𝐴  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  𝑥  ∈  𝐴 )  →  ( 𝐵  +no  𝑥 )  =  ( 𝑥  +no  𝐵 ) ) | 
						
							| 7 | 6 | eleq1d | ⊢ ( ( ( Ord  𝐴  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐵  +no  𝑥 )  ∈  𝐶  ↔  ( 𝑥  +no  𝐵 )  ∈  𝐶 ) ) | 
						
							| 8 | 7 | rabbidva | ⊢ ( ( Ord  𝐴  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  { 𝑥  ∈  𝐴  ∣  ( 𝐵  +no  𝑥 )  ∈  𝐶 }  =  { 𝑥  ∈  𝐴  ∣  ( 𝑥  +no  𝐵 )  ∈  𝐶 } ) | 
						
							| 9 |  | treq | ⊢ ( { 𝑥  ∈  𝐴  ∣  ( 𝐵  +no  𝑥 )  ∈  𝐶 }  =  { 𝑥  ∈  𝐴  ∣  ( 𝑥  +no  𝐵 )  ∈  𝐶 }  →  ( Tr  { 𝑥  ∈  𝐴  ∣  ( 𝐵  +no  𝑥 )  ∈  𝐶 }  ↔  Tr  { 𝑥  ∈  𝐴  ∣  ( 𝑥  +no  𝐵 )  ∈  𝐶 } ) ) | 
						
							| 10 | 8 9 | syl | ⊢ ( ( Ord  𝐴  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( Tr  { 𝑥  ∈  𝐴  ∣  ( 𝐵  +no  𝑥 )  ∈  𝐶 }  ↔  Tr  { 𝑥  ∈  𝐴  ∣  ( 𝑥  +no  𝐵 )  ∈  𝐶 } ) ) | 
						
							| 11 | 1 10 | mpbid | ⊢ ( ( Ord  𝐴  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  Tr  { 𝑥  ∈  𝐴  ∣  ( 𝑥  +no  𝐵 )  ∈  𝐶 } ) |