Metamath Proof Explorer


Theorem nadd1rabtr

Description: The set of ordinals which have a natural sum less than some ordinal is transitive. (Contributed by RP, 20-Dec-2024)

Ref Expression
Assertion nadd1rabtr ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) → Tr { 𝑥𝐴 ∣ ( 𝑥 +no 𝐵 ) ∈ 𝐶 } )

Proof

Step Hyp Ref Expression
1 nadd2rabtr ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) → Tr { 𝑥𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } )
2 simpl2 ( ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥𝐴 ) → 𝐵 ∈ On )
3 ordelon ( ( Ord 𝐴𝑥𝐴 ) → 𝑥 ∈ On )
4 3 3ad2antl1 ( ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥𝐴 ) → 𝑥 ∈ On )
5 naddcom ( ( 𝐵 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐵 +no 𝑥 ) = ( 𝑥 +no 𝐵 ) )
6 2 4 5 syl2anc ( ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥𝐴 ) → ( 𝐵 +no 𝑥 ) = ( 𝑥 +no 𝐵 ) )
7 6 eleq1d ( ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥𝐴 ) → ( ( 𝐵 +no 𝑥 ) ∈ 𝐶 ↔ ( 𝑥 +no 𝐵 ) ∈ 𝐶 ) )
8 7 rabbidva ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) → { 𝑥𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } = { 𝑥𝐴 ∣ ( 𝑥 +no 𝐵 ) ∈ 𝐶 } )
9 treq ( { 𝑥𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } = { 𝑥𝐴 ∣ ( 𝑥 +no 𝐵 ) ∈ 𝐶 } → ( Tr { 𝑥𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ↔ Tr { 𝑥𝐴 ∣ ( 𝑥 +no 𝐵 ) ∈ 𝐶 } ) )
10 8 9 syl ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( Tr { 𝑥𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ↔ Tr { 𝑥𝐴 ∣ ( 𝑥 +no 𝐵 ) ∈ 𝐶 } ) )
11 1 10 mpbid ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) → Tr { 𝑥𝐴 ∣ ( 𝑥 +no 𝐵 ) ∈ 𝐶 } )