Step |
Hyp |
Ref |
Expression |
1 |
|
nadd2rabtr |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → Tr { 𝑥 ∈ 𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ) |
2 |
|
simpl2 |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ On ) |
3 |
|
ordelon |
⊢ ( ( Ord 𝐴 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ On ) |
4 |
3
|
3ad2antl1 |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ On ) |
5 |
|
naddcom |
⊢ ( ( 𝐵 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐵 +no 𝑥 ) = ( 𝑥 +no 𝐵 ) ) |
6 |
2 4 5
|
syl2anc |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 +no 𝑥 ) = ( 𝑥 +no 𝐵 ) ) |
7 |
6
|
eleq1d |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐵 +no 𝑥 ) ∈ 𝐶 ↔ ( 𝑥 +no 𝐵 ) ∈ 𝐶 ) ) |
8 |
7
|
rabbidva |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → { 𝑥 ∈ 𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } = { 𝑥 ∈ 𝐴 ∣ ( 𝑥 +no 𝐵 ) ∈ 𝐶 } ) |
9 |
|
treq |
⊢ ( { 𝑥 ∈ 𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } = { 𝑥 ∈ 𝐴 ∣ ( 𝑥 +no 𝐵 ) ∈ 𝐶 } → ( Tr { 𝑥 ∈ 𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ↔ Tr { 𝑥 ∈ 𝐴 ∣ ( 𝑥 +no 𝐵 ) ∈ 𝐶 } ) ) |
10 |
8 9
|
syl |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( Tr { 𝑥 ∈ 𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ↔ Tr { 𝑥 ∈ 𝐴 ∣ ( 𝑥 +no 𝐵 ) ∈ 𝐶 } ) ) |
11 |
1 10
|
mpbid |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → Tr { 𝑥 ∈ 𝐴 ∣ ( 𝑥 +no 𝐵 ) ∈ 𝐶 } ) |