| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssrab2 | ⊢ { 𝑥  ∈  𝐴  ∣  ( 𝑥  +no  𝐵 )  ∈  𝐶 }  ⊆  𝐴 | 
						
							| 2 |  | ordsson | ⊢ ( Ord  𝐴  →  𝐴  ⊆  On ) | 
						
							| 3 | 2 | 3ad2ant1 | ⊢ ( ( Ord  𝐴  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  𝐴  ⊆  On ) | 
						
							| 4 | 1 3 | sstrid | ⊢ ( ( Ord  𝐴  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  { 𝑥  ∈  𝐴  ∣  ( 𝑥  +no  𝐵 )  ∈  𝐶 }  ⊆  On ) | 
						
							| 5 |  | nadd1rabtr | ⊢ ( ( Ord  𝐴  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  Tr  { 𝑥  ∈  𝐴  ∣  ( 𝑥  +no  𝐵 )  ∈  𝐶 } ) | 
						
							| 6 |  | dford5 | ⊢ ( Ord  { 𝑥  ∈  𝐴  ∣  ( 𝑥  +no  𝐵 )  ∈  𝐶 }  ↔  ( { 𝑥  ∈  𝐴  ∣  ( 𝑥  +no  𝐵 )  ∈  𝐶 }  ⊆  On  ∧  Tr  { 𝑥  ∈  𝐴  ∣  ( 𝑥  +no  𝐵 )  ∈  𝐶 } ) ) | 
						
							| 7 | 4 5 6 | sylanbrc | ⊢ ( ( Ord  𝐴  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  Ord  { 𝑥  ∈  𝐴  ∣  ( 𝑥  +no  𝐵 )  ∈  𝐶 } ) |