| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl2 | ⊢ ( ( ( Ord  𝐴  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  On ) | 
						
							| 2 |  | ordelon | ⊢ ( ( Ord  𝐴  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  On ) | 
						
							| 3 | 2 | 3ad2antl1 | ⊢ ( ( ( Ord  𝐴  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  On ) | 
						
							| 4 |  | naddcom | ⊢ ( ( 𝐵  ∈  On  ∧  𝑥  ∈  On )  →  ( 𝐵  +no  𝑥 )  =  ( 𝑥  +no  𝐵 ) ) | 
						
							| 5 | 1 3 4 | syl2anc | ⊢ ( ( ( Ord  𝐴  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  𝑥  ∈  𝐴 )  →  ( 𝐵  +no  𝑥 )  =  ( 𝑥  +no  𝐵 ) ) | 
						
							| 6 | 5 | eleq1d | ⊢ ( ( ( Ord  𝐴  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐵  +no  𝑥 )  ∈  𝐶  ↔  ( 𝑥  +no  𝐵 )  ∈  𝐶 ) ) | 
						
							| 7 | 6 | rabbidva | ⊢ ( ( Ord  𝐴  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  { 𝑥  ∈  𝐴  ∣  ( 𝐵  +no  𝑥 )  ∈  𝐶 }  =  { 𝑥  ∈  𝐴  ∣  ( 𝑥  +no  𝐵 )  ∈  𝐶 } ) | 
						
							| 8 |  | nadd2rabex | ⊢ ( ( Ord  𝐴  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  { 𝑥  ∈  𝐴  ∣  ( 𝐵  +no  𝑥 )  ∈  𝐶 }  ∈  V ) | 
						
							| 9 | 7 8 | eqeltrrd | ⊢ ( ( Ord  𝐴  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  { 𝑥  ∈  𝐴  ∣  ( 𝑥  +no  𝐵 )  ∈  𝐶 }  ∈  V ) |