Metamath Proof Explorer


Theorem nadd1rabex

Description: The class of ordinals which have a natural sum less than some ordinal is a set. (Contributed by RP, 20-Dec-2024)

Ref Expression
Assertion nadd1rabex ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) → { 𝑥𝐴 ∣ ( 𝑥 +no 𝐵 ) ∈ 𝐶 } ∈ V )

Proof

Step Hyp Ref Expression
1 simpl2 ( ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥𝐴 ) → 𝐵 ∈ On )
2 ordelon ( ( Ord 𝐴𝑥𝐴 ) → 𝑥 ∈ On )
3 2 3ad2antl1 ( ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥𝐴 ) → 𝑥 ∈ On )
4 naddcom ( ( 𝐵 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐵 +no 𝑥 ) = ( 𝑥 +no 𝐵 ) )
5 1 3 4 syl2anc ( ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥𝐴 ) → ( 𝐵 +no 𝑥 ) = ( 𝑥 +no 𝐵 ) )
6 5 eleq1d ( ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝑥𝐴 ) → ( ( 𝐵 +no 𝑥 ) ∈ 𝐶 ↔ ( 𝑥 +no 𝐵 ) ∈ 𝐶 ) )
7 6 rabbidva ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) → { 𝑥𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } = { 𝑥𝐴 ∣ ( 𝑥 +no 𝐵 ) ∈ 𝐶 } )
8 nadd2rabex ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) → { 𝑥𝐴 ∣ ( 𝐵 +no 𝑥 ) ∈ 𝐶 } ∈ V )
9 7 8 eqeltrrd ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) → { 𝑥𝐴 ∣ ( 𝑥 +no 𝐵 ) ∈ 𝐶 } ∈ V )