Metamath Proof Explorer


Theorem nadd1rabon

Description: The set of ordinals which have a natural sum less than some ordinal is an ordinal number. (Contributed by RP, 20-Dec-2024)

Ref Expression
Assertion nadd1rabon ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) → { 𝑥𝐴 ∣ ( 𝑥 +no 𝐵 ) ∈ 𝐶 } ∈ On )

Proof

Step Hyp Ref Expression
1 nadd1rabord ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) → Ord { 𝑥𝐴 ∣ ( 𝑥 +no 𝐵 ) ∈ 𝐶 } )
2 nadd1rabex ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) → { 𝑥𝐴 ∣ ( 𝑥 +no 𝐵 ) ∈ 𝐶 } ∈ V )
3 elon2 ( { 𝑥𝐴 ∣ ( 𝑥 +no 𝐵 ) ∈ 𝐶 } ∈ On ↔ ( Ord { 𝑥𝐴 ∣ ( 𝑥 +no 𝐵 ) ∈ 𝐶 } ∧ { 𝑥𝐴 ∣ ( 𝑥 +no 𝐵 ) ∈ 𝐶 } ∈ V ) )
4 1 2 3 sylanbrc ( ( Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On ) → { 𝑥𝐴 ∣ ( 𝑥 +no 𝐵 ) ∈ 𝐶 } ∈ On )