Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 +no 1o ) = ( 𝑏 +no 1o ) ) |
2 |
|
suceq |
⊢ ( 𝑎 = 𝑏 → suc 𝑎 = suc 𝑏 ) |
3 |
1 2
|
eqeq12d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝑎 +no 1o ) = suc 𝑎 ↔ ( 𝑏 +no 1o ) = suc 𝑏 ) ) |
4 |
|
oveq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 +no 1o ) = ( 𝐴 +no 1o ) ) |
5 |
|
suceq |
⊢ ( 𝑎 = 𝐴 → suc 𝑎 = suc 𝐴 ) |
6 |
4 5
|
eqeq12d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 +no 1o ) = suc 𝑎 ↔ ( 𝐴 +no 1o ) = suc 𝐴 ) ) |
7 |
|
naddrid |
⊢ ( 𝑎 ∈ On → ( 𝑎 +no ∅ ) = 𝑎 ) |
8 |
7
|
eleq1d |
⊢ ( 𝑎 ∈ On → ( ( 𝑎 +no ∅ ) ∈ 𝑥 ↔ 𝑎 ∈ 𝑥 ) ) |
9 |
8
|
anbi1d |
⊢ ( 𝑎 ∈ On → ( ( ( 𝑎 +no ∅ ) ∈ 𝑥 ∧ ∀ 𝑏 ∈ 𝑎 suc 𝑏 ∈ 𝑥 ) ↔ ( 𝑎 ∈ 𝑥 ∧ ∀ 𝑏 ∈ 𝑎 suc 𝑏 ∈ 𝑥 ) ) ) |
10 |
9
|
ad2antrr |
⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no 1o ) = suc 𝑏 ) ∧ 𝑥 ∈ On ) → ( ( ( 𝑎 +no ∅ ) ∈ 𝑥 ∧ ∀ 𝑏 ∈ 𝑎 suc 𝑏 ∈ 𝑥 ) ↔ ( 𝑎 ∈ 𝑥 ∧ ∀ 𝑏 ∈ 𝑎 suc 𝑏 ∈ 𝑥 ) ) ) |
11 |
|
df1o2 |
⊢ 1o = { ∅ } |
12 |
11
|
raleqi |
⊢ ( ∀ 𝑦 ∈ 1o ( 𝑎 +no 𝑦 ) ∈ 𝑥 ↔ ∀ 𝑦 ∈ { ∅ } ( 𝑎 +no 𝑦 ) ∈ 𝑥 ) |
13 |
|
0ex |
⊢ ∅ ∈ V |
14 |
|
oveq2 |
⊢ ( 𝑦 = ∅ → ( 𝑎 +no 𝑦 ) = ( 𝑎 +no ∅ ) ) |
15 |
14
|
eleq1d |
⊢ ( 𝑦 = ∅ → ( ( 𝑎 +no 𝑦 ) ∈ 𝑥 ↔ ( 𝑎 +no ∅ ) ∈ 𝑥 ) ) |
16 |
13 15
|
ralsn |
⊢ ( ∀ 𝑦 ∈ { ∅ } ( 𝑎 +no 𝑦 ) ∈ 𝑥 ↔ ( 𝑎 +no ∅ ) ∈ 𝑥 ) |
17 |
12 16
|
bitri |
⊢ ( ∀ 𝑦 ∈ 1o ( 𝑎 +no 𝑦 ) ∈ 𝑥 ↔ ( 𝑎 +no ∅ ) ∈ 𝑥 ) |
18 |
17
|
a1i |
⊢ ( ( 𝑎 ∈ On ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no 1o ) = suc 𝑏 ) → ( ∀ 𝑦 ∈ 1o ( 𝑎 +no 𝑦 ) ∈ 𝑥 ↔ ( 𝑎 +no ∅ ) ∈ 𝑥 ) ) |
19 |
|
oveq1 |
⊢ ( 𝑦 = 𝑏 → ( 𝑦 +no 1o ) = ( 𝑏 +no 1o ) ) |
20 |
19
|
eleq1d |
⊢ ( 𝑦 = 𝑏 → ( ( 𝑦 +no 1o ) ∈ 𝑥 ↔ ( 𝑏 +no 1o ) ∈ 𝑥 ) ) |
21 |
20
|
cbvralvw |
⊢ ( ∀ 𝑦 ∈ 𝑎 ( 𝑦 +no 1o ) ∈ 𝑥 ↔ ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no 1o ) ∈ 𝑥 ) |
22 |
|
nfv |
⊢ Ⅎ 𝑏 𝑎 ∈ On |
23 |
|
nfra1 |
⊢ Ⅎ 𝑏 ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no 1o ) = suc 𝑏 |
24 |
22 23
|
nfan |
⊢ Ⅎ 𝑏 ( 𝑎 ∈ On ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no 1o ) = suc 𝑏 ) |
25 |
|
simpr |
⊢ ( ( 𝑎 ∈ On ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no 1o ) = suc 𝑏 ) → ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no 1o ) = suc 𝑏 ) |
26 |
25
|
r19.21bi |
⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no 1o ) = suc 𝑏 ) ∧ 𝑏 ∈ 𝑎 ) → ( 𝑏 +no 1o ) = suc 𝑏 ) |
27 |
26
|
eleq1d |
⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no 1o ) = suc 𝑏 ) ∧ 𝑏 ∈ 𝑎 ) → ( ( 𝑏 +no 1o ) ∈ 𝑥 ↔ suc 𝑏 ∈ 𝑥 ) ) |
28 |
24 27
|
ralbida |
⊢ ( ( 𝑎 ∈ On ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no 1o ) = suc 𝑏 ) → ( ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no 1o ) ∈ 𝑥 ↔ ∀ 𝑏 ∈ 𝑎 suc 𝑏 ∈ 𝑥 ) ) |
29 |
21 28
|
bitrid |
⊢ ( ( 𝑎 ∈ On ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no 1o ) = suc 𝑏 ) → ( ∀ 𝑦 ∈ 𝑎 ( 𝑦 +no 1o ) ∈ 𝑥 ↔ ∀ 𝑏 ∈ 𝑎 suc 𝑏 ∈ 𝑥 ) ) |
30 |
18 29
|
anbi12d |
⊢ ( ( 𝑎 ∈ On ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no 1o ) = suc 𝑏 ) → ( ( ∀ 𝑦 ∈ 1o ( 𝑎 +no 𝑦 ) ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑎 ( 𝑦 +no 1o ) ∈ 𝑥 ) ↔ ( ( 𝑎 +no ∅ ) ∈ 𝑥 ∧ ∀ 𝑏 ∈ 𝑎 suc 𝑏 ∈ 𝑥 ) ) ) |
31 |
30
|
adantr |
⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no 1o ) = suc 𝑏 ) ∧ 𝑥 ∈ On ) → ( ( ∀ 𝑦 ∈ 1o ( 𝑎 +no 𝑦 ) ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑎 ( 𝑦 +no 1o ) ∈ 𝑥 ) ↔ ( ( 𝑎 +no ∅ ) ∈ 𝑥 ∧ ∀ 𝑏 ∈ 𝑎 suc 𝑏 ∈ 𝑥 ) ) ) |
32 |
|
onelon |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ 𝑎 ) → 𝑏 ∈ On ) |
33 |
32
|
ad4ant13 |
⊢ ( ( ( ( 𝑎 ∈ On ∧ 𝑥 ∈ On ) ∧ 𝑏 ∈ 𝑎 ) ∧ 𝑎 ∈ 𝑥 ) → 𝑏 ∈ On ) |
34 |
|
onsuc |
⊢ ( 𝑏 ∈ On → suc 𝑏 ∈ On ) |
35 |
33 34
|
syl |
⊢ ( ( ( ( 𝑎 ∈ On ∧ 𝑥 ∈ On ) ∧ 𝑏 ∈ 𝑎 ) ∧ 𝑎 ∈ 𝑥 ) → suc 𝑏 ∈ On ) |
36 |
|
simpllr |
⊢ ( ( ( ( 𝑎 ∈ On ∧ 𝑥 ∈ On ) ∧ 𝑏 ∈ 𝑎 ) ∧ 𝑎 ∈ 𝑥 ) → 𝑥 ∈ On ) |
37 |
35 36
|
jca |
⊢ ( ( ( ( 𝑎 ∈ On ∧ 𝑥 ∈ On ) ∧ 𝑏 ∈ 𝑎 ) ∧ 𝑎 ∈ 𝑥 ) → ( suc 𝑏 ∈ On ∧ 𝑥 ∈ On ) ) |
38 |
|
eloni |
⊢ ( 𝑎 ∈ On → Ord 𝑎 ) |
39 |
38
|
ad3antrrr |
⊢ ( ( ( ( 𝑎 ∈ On ∧ 𝑥 ∈ On ) ∧ 𝑏 ∈ 𝑎 ) ∧ 𝑎 ∈ 𝑥 ) → Ord 𝑎 ) |
40 |
|
simplr |
⊢ ( ( ( ( 𝑎 ∈ On ∧ 𝑥 ∈ On ) ∧ 𝑏 ∈ 𝑎 ) ∧ 𝑎 ∈ 𝑥 ) → 𝑏 ∈ 𝑎 ) |
41 |
|
ordsucss |
⊢ ( Ord 𝑎 → ( 𝑏 ∈ 𝑎 → suc 𝑏 ⊆ 𝑎 ) ) |
42 |
39 40 41
|
sylc |
⊢ ( ( ( ( 𝑎 ∈ On ∧ 𝑥 ∈ On ) ∧ 𝑏 ∈ 𝑎 ) ∧ 𝑎 ∈ 𝑥 ) → suc 𝑏 ⊆ 𝑎 ) |
43 |
|
simpr |
⊢ ( ( ( ( 𝑎 ∈ On ∧ 𝑥 ∈ On ) ∧ 𝑏 ∈ 𝑎 ) ∧ 𝑎 ∈ 𝑥 ) → 𝑎 ∈ 𝑥 ) |
44 |
42 43
|
jca |
⊢ ( ( ( ( 𝑎 ∈ On ∧ 𝑥 ∈ On ) ∧ 𝑏 ∈ 𝑎 ) ∧ 𝑎 ∈ 𝑥 ) → ( suc 𝑏 ⊆ 𝑎 ∧ 𝑎 ∈ 𝑥 ) ) |
45 |
|
ontr2 |
⊢ ( ( suc 𝑏 ∈ On ∧ 𝑥 ∈ On ) → ( ( suc 𝑏 ⊆ 𝑎 ∧ 𝑎 ∈ 𝑥 ) → suc 𝑏 ∈ 𝑥 ) ) |
46 |
37 44 45
|
sylc |
⊢ ( ( ( ( 𝑎 ∈ On ∧ 𝑥 ∈ On ) ∧ 𝑏 ∈ 𝑎 ) ∧ 𝑎 ∈ 𝑥 ) → suc 𝑏 ∈ 𝑥 ) |
47 |
46
|
ex |
⊢ ( ( ( 𝑎 ∈ On ∧ 𝑥 ∈ On ) ∧ 𝑏 ∈ 𝑎 ) → ( 𝑎 ∈ 𝑥 → suc 𝑏 ∈ 𝑥 ) ) |
48 |
47
|
ralrimdva |
⊢ ( ( 𝑎 ∈ On ∧ 𝑥 ∈ On ) → ( 𝑎 ∈ 𝑥 → ∀ 𝑏 ∈ 𝑎 suc 𝑏 ∈ 𝑥 ) ) |
49 |
48
|
pm4.71d |
⊢ ( ( 𝑎 ∈ On ∧ 𝑥 ∈ On ) → ( 𝑎 ∈ 𝑥 ↔ ( 𝑎 ∈ 𝑥 ∧ ∀ 𝑏 ∈ 𝑎 suc 𝑏 ∈ 𝑥 ) ) ) |
50 |
49
|
adantlr |
⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no 1o ) = suc 𝑏 ) ∧ 𝑥 ∈ On ) → ( 𝑎 ∈ 𝑥 ↔ ( 𝑎 ∈ 𝑥 ∧ ∀ 𝑏 ∈ 𝑎 suc 𝑏 ∈ 𝑥 ) ) ) |
51 |
10 31 50
|
3bitr4d |
⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no 1o ) = suc 𝑏 ) ∧ 𝑥 ∈ On ) → ( ( ∀ 𝑦 ∈ 1o ( 𝑎 +no 𝑦 ) ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑎 ( 𝑦 +no 1o ) ∈ 𝑥 ) ↔ 𝑎 ∈ 𝑥 ) ) |
52 |
51
|
rabbidva |
⊢ ( ( 𝑎 ∈ On ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no 1o ) = suc 𝑏 ) → { 𝑥 ∈ On ∣ ( ∀ 𝑦 ∈ 1o ( 𝑎 +no 𝑦 ) ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑎 ( 𝑦 +no 1o ) ∈ 𝑥 ) } = { 𝑥 ∈ On ∣ 𝑎 ∈ 𝑥 } ) |
53 |
52
|
inteqd |
⊢ ( ( 𝑎 ∈ On ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no 1o ) = suc 𝑏 ) → ∩ { 𝑥 ∈ On ∣ ( ∀ 𝑦 ∈ 1o ( 𝑎 +no 𝑦 ) ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑎 ( 𝑦 +no 1o ) ∈ 𝑥 ) } = ∩ { 𝑥 ∈ On ∣ 𝑎 ∈ 𝑥 } ) |
54 |
|
1on |
⊢ 1o ∈ On |
55 |
|
naddov2 |
⊢ ( ( 𝑎 ∈ On ∧ 1o ∈ On ) → ( 𝑎 +no 1o ) = ∩ { 𝑥 ∈ On ∣ ( ∀ 𝑦 ∈ 1o ( 𝑎 +no 𝑦 ) ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑎 ( 𝑦 +no 1o ) ∈ 𝑥 ) } ) |
56 |
54 55
|
mpan2 |
⊢ ( 𝑎 ∈ On → ( 𝑎 +no 1o ) = ∩ { 𝑥 ∈ On ∣ ( ∀ 𝑦 ∈ 1o ( 𝑎 +no 𝑦 ) ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑎 ( 𝑦 +no 1o ) ∈ 𝑥 ) } ) |
57 |
56
|
adantr |
⊢ ( ( 𝑎 ∈ On ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no 1o ) = suc 𝑏 ) → ( 𝑎 +no 1o ) = ∩ { 𝑥 ∈ On ∣ ( ∀ 𝑦 ∈ 1o ( 𝑎 +no 𝑦 ) ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑎 ( 𝑦 +no 1o ) ∈ 𝑥 ) } ) |
58 |
|
onsucmin |
⊢ ( 𝑎 ∈ On → suc 𝑎 = ∩ { 𝑥 ∈ On ∣ 𝑎 ∈ 𝑥 } ) |
59 |
58
|
adantr |
⊢ ( ( 𝑎 ∈ On ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no 1o ) = suc 𝑏 ) → suc 𝑎 = ∩ { 𝑥 ∈ On ∣ 𝑎 ∈ 𝑥 } ) |
60 |
53 57 59
|
3eqtr4d |
⊢ ( ( 𝑎 ∈ On ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no 1o ) = suc 𝑏 ) → ( 𝑎 +no 1o ) = suc 𝑎 ) |
61 |
60
|
ex |
⊢ ( 𝑎 ∈ On → ( ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no 1o ) = suc 𝑏 → ( 𝑎 +no 1o ) = suc 𝑎 ) ) |
62 |
3 6 61
|
tfis3 |
⊢ ( 𝐴 ∈ On → ( 𝐴 +no 1o ) = suc 𝐴 ) |