Metamath Proof Explorer


Theorem naddass1

Description: Natural addition of ordinal numbers is associative when the third element is 1. (Contributed by RP, 1-Jan-2025)

Ref Expression
Assertion naddass1 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +no 𝐵 ) +no 1o ) = ( 𝐴 +no ( 𝐵 +no 1o ) ) )

Proof

Step Hyp Ref Expression
1 naddsuc2 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +no suc 𝐵 ) = suc ( 𝐴 +no 𝐵 ) )
2 nadd1suc ( 𝐵 ∈ On → ( 𝐵 +no 1o ) = suc 𝐵 )
3 2 adantl ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 +no 1o ) = suc 𝐵 )
4 3 oveq2d ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +no ( 𝐵 +no 1o ) ) = ( 𝐴 +no suc 𝐵 ) )
5 naddcl ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +no 𝐵 ) ∈ On )
6 nadd1suc ( ( 𝐴 +no 𝐵 ) ∈ On → ( ( 𝐴 +no 𝐵 ) +no 1o ) = suc ( 𝐴 +no 𝐵 ) )
7 5 6 syl ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +no 𝐵 ) +no 1o ) = suc ( 𝐴 +no 𝐵 ) )
8 1 4 7 3eqtr4rd ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +no 𝐵 ) +no 1o ) = ( 𝐴 +no ( 𝐵 +no 1o ) ) )