Step |
Hyp |
Ref |
Expression |
1 |
|
naddsuc2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +no suc 𝐵 ) = suc ( 𝐴 +no 𝐵 ) ) |
2 |
|
nadd1suc |
⊢ ( 𝐵 ∈ On → ( 𝐵 +no 1o ) = suc 𝐵 ) |
3 |
2
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 +no 1o ) = suc 𝐵 ) |
4 |
3
|
oveq2d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +no ( 𝐵 +no 1o ) ) = ( 𝐴 +no suc 𝐵 ) ) |
5 |
|
naddcl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +no 𝐵 ) ∈ On ) |
6 |
|
nadd1suc |
⊢ ( ( 𝐴 +no 𝐵 ) ∈ On → ( ( 𝐴 +no 𝐵 ) +no 1o ) = suc ( 𝐴 +no 𝐵 ) ) |
7 |
5 6
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +no 𝐵 ) +no 1o ) = suc ( 𝐴 +no 𝐵 ) ) |
8 |
1 4 7
|
3eqtr4rd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +no 𝐵 ) +no 1o ) = ( 𝐴 +no ( 𝐵 +no 1o ) ) ) |