Step |
Hyp |
Ref |
Expression |
1 |
|
naddsuc2 |
|- ( ( A e. On /\ B e. On ) -> ( A +no suc B ) = suc ( A +no B ) ) |
2 |
|
nadd1suc |
|- ( B e. On -> ( B +no 1o ) = suc B ) |
3 |
2
|
adantl |
|- ( ( A e. On /\ B e. On ) -> ( B +no 1o ) = suc B ) |
4 |
3
|
oveq2d |
|- ( ( A e. On /\ B e. On ) -> ( A +no ( B +no 1o ) ) = ( A +no suc B ) ) |
5 |
|
naddcl |
|- ( ( A e. On /\ B e. On ) -> ( A +no B ) e. On ) |
6 |
|
nadd1suc |
|- ( ( A +no B ) e. On -> ( ( A +no B ) +no 1o ) = suc ( A +no B ) ) |
7 |
5 6
|
syl |
|- ( ( A e. On /\ B e. On ) -> ( ( A +no B ) +no 1o ) = suc ( A +no B ) ) |
8 |
1 4 7
|
3eqtr4rd |
|- ( ( A e. On /\ B e. On ) -> ( ( A +no B ) +no 1o ) = ( A +no ( B +no 1o ) ) ) |