Metamath Proof Explorer


Theorem naddass1

Description: Natural addition of ordinal numbers is associative when the third element is 1. (Contributed by RP, 1-Jan-2025)

Ref Expression
Assertion naddass1
|- ( ( A e. On /\ B e. On ) -> ( ( A +no B ) +no 1o ) = ( A +no ( B +no 1o ) ) )

Proof

Step Hyp Ref Expression
1 naddsuc2
 |-  ( ( A e. On /\ B e. On ) -> ( A +no suc B ) = suc ( A +no B ) )
2 nadd1suc
 |-  ( B e. On -> ( B +no 1o ) = suc B )
3 2 adantl
 |-  ( ( A e. On /\ B e. On ) -> ( B +no 1o ) = suc B )
4 3 oveq2d
 |-  ( ( A e. On /\ B e. On ) -> ( A +no ( B +no 1o ) ) = ( A +no suc B ) )
5 naddcl
 |-  ( ( A e. On /\ B e. On ) -> ( A +no B ) e. On )
6 nadd1suc
 |-  ( ( A +no B ) e. On -> ( ( A +no B ) +no 1o ) = suc ( A +no B ) )
7 5 6 syl
 |-  ( ( A e. On /\ B e. On ) -> ( ( A +no B ) +no 1o ) = suc ( A +no B ) )
8 1 4 7 3eqtr4rd
 |-  ( ( A e. On /\ B e. On ) -> ( ( A +no B ) +no 1o ) = ( A +no ( B +no 1o ) ) )