| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
|- ( a = c -> ( a +o b ) = ( c +o b ) ) |
| 2 |
|
oveq1 |
|- ( a = c -> ( a +no b ) = ( c +no b ) ) |
| 3 |
1 2
|
sseq12d |
|- ( a = c -> ( ( a +o b ) C_ ( a +no b ) <-> ( c +o b ) C_ ( c +no b ) ) ) |
| 4 |
|
oveq2 |
|- ( b = d -> ( c +o b ) = ( c +o d ) ) |
| 5 |
|
oveq2 |
|- ( b = d -> ( c +no b ) = ( c +no d ) ) |
| 6 |
4 5
|
sseq12d |
|- ( b = d -> ( ( c +o b ) C_ ( c +no b ) <-> ( c +o d ) C_ ( c +no d ) ) ) |
| 7 |
|
oveq1 |
|- ( a = c -> ( a +o d ) = ( c +o d ) ) |
| 8 |
|
oveq1 |
|- ( a = c -> ( a +no d ) = ( c +no d ) ) |
| 9 |
7 8
|
sseq12d |
|- ( a = c -> ( ( a +o d ) C_ ( a +no d ) <-> ( c +o d ) C_ ( c +no d ) ) ) |
| 10 |
|
oveq1 |
|- ( a = A -> ( a +o b ) = ( A +o b ) ) |
| 11 |
|
oveq1 |
|- ( a = A -> ( a +no b ) = ( A +no b ) ) |
| 12 |
10 11
|
sseq12d |
|- ( a = A -> ( ( a +o b ) C_ ( a +no b ) <-> ( A +o b ) C_ ( A +no b ) ) ) |
| 13 |
|
oveq2 |
|- ( b = B -> ( A +o b ) = ( A +o B ) ) |
| 14 |
|
oveq2 |
|- ( b = B -> ( A +no b ) = ( A +no B ) ) |
| 15 |
13 14
|
sseq12d |
|- ( b = B -> ( ( A +o b ) C_ ( A +no b ) <-> ( A +o B ) C_ ( A +no B ) ) ) |
| 16 |
|
simplll |
|- ( ( ( ( a e. On /\ b e. On ) /\ Lim b ) /\ ( A. c e. a A. d e. b ( c +o d ) C_ ( c +no d ) /\ A. c e. a ( c +o b ) C_ ( c +no b ) /\ A. d e. b ( a +o d ) C_ ( a +no d ) ) ) -> a e. On ) |
| 17 |
|
simpllr |
|- ( ( ( ( a e. On /\ b e. On ) /\ Lim b ) /\ ( A. c e. a A. d e. b ( c +o d ) C_ ( c +no d ) /\ A. c e. a ( c +o b ) C_ ( c +no b ) /\ A. d e. b ( a +o d ) C_ ( a +no d ) ) ) -> b e. On ) |
| 18 |
|
simplr |
|- ( ( ( ( a e. On /\ b e. On ) /\ Lim b ) /\ ( A. c e. a A. d e. b ( c +o d ) C_ ( c +no d ) /\ A. c e. a ( c +o b ) C_ ( c +no b ) /\ A. d e. b ( a +o d ) C_ ( a +no d ) ) ) -> Lim b ) |
| 19 |
17 18
|
jca |
|- ( ( ( ( a e. On /\ b e. On ) /\ Lim b ) /\ ( A. c e. a A. d e. b ( c +o d ) C_ ( c +no d ) /\ A. c e. a ( c +o b ) C_ ( c +no b ) /\ A. d e. b ( a +o d ) C_ ( a +no d ) ) ) -> ( b e. On /\ Lim b ) ) |
| 20 |
|
oalim |
|- ( ( a e. On /\ ( b e. On /\ Lim b ) ) -> ( a +o b ) = U_ d e. b ( a +o d ) ) |
| 21 |
16 19 20
|
syl2anc |
|- ( ( ( ( a e. On /\ b e. On ) /\ Lim b ) /\ ( A. c e. a A. d e. b ( c +o d ) C_ ( c +no d ) /\ A. c e. a ( c +o b ) C_ ( c +no b ) /\ A. d e. b ( a +o d ) C_ ( a +no d ) ) ) -> ( a +o b ) = U_ d e. b ( a +o d ) ) |
| 22 |
|
simpl |
|- ( ( ( a e. On /\ b e. On ) /\ Lim b ) -> ( a e. On /\ b e. On ) ) |
| 23 |
|
simp3 |
|- ( ( A. c e. a A. d e. b ( c +o d ) C_ ( c +no d ) /\ A. c e. a ( c +o b ) C_ ( c +no b ) /\ A. d e. b ( a +o d ) C_ ( a +no d ) ) -> A. d e. b ( a +o d ) C_ ( a +no d ) ) |
| 24 |
|
simpr |
|- ( ( ( ( a e. On /\ b e. On ) /\ d e. b ) /\ ( a +o d ) C_ ( a +no d ) ) -> ( a +o d ) C_ ( a +no d ) ) |
| 25 |
|
simpr |
|- ( ( a e. On /\ b e. On ) -> b e. On ) |
| 26 |
|
onelss |
|- ( b e. On -> ( d e. b -> d C_ b ) ) |
| 27 |
25 26
|
syl |
|- ( ( a e. On /\ b e. On ) -> ( d e. b -> d C_ b ) ) |
| 28 |
27
|
imp |
|- ( ( ( a e. On /\ b e. On ) /\ d e. b ) -> d C_ b ) |
| 29 |
|
simplr |
|- ( ( ( a e. On /\ b e. On ) /\ d e. b ) -> b e. On ) |
| 30 |
|
simpr |
|- ( ( ( a e. On /\ b e. On ) /\ d e. b ) -> d e. b ) |
| 31 |
|
onelon |
|- ( ( b e. On /\ d e. b ) -> d e. On ) |
| 32 |
29 30 31
|
syl2anc |
|- ( ( ( a e. On /\ b e. On ) /\ d e. b ) -> d e. On ) |
| 33 |
|
simpll |
|- ( ( ( a e. On /\ b e. On ) /\ d e. b ) -> a e. On ) |
| 34 |
|
naddss2 |
|- ( ( d e. On /\ b e. On /\ a e. On ) -> ( d C_ b <-> ( a +no d ) C_ ( a +no b ) ) ) |
| 35 |
32 29 33 34
|
syl3anc |
|- ( ( ( a e. On /\ b e. On ) /\ d e. b ) -> ( d C_ b <-> ( a +no d ) C_ ( a +no b ) ) ) |
| 36 |
28 35
|
mpbid |
|- ( ( ( a e. On /\ b e. On ) /\ d e. b ) -> ( a +no d ) C_ ( a +no b ) ) |
| 37 |
36
|
adantr |
|- ( ( ( ( a e. On /\ b e. On ) /\ d e. b ) /\ ( a +o d ) C_ ( a +no d ) ) -> ( a +no d ) C_ ( a +no b ) ) |
| 38 |
24 37
|
sstrd |
|- ( ( ( ( a e. On /\ b e. On ) /\ d e. b ) /\ ( a +o d ) C_ ( a +no d ) ) -> ( a +o d ) C_ ( a +no b ) ) |
| 39 |
38
|
ex |
|- ( ( ( a e. On /\ b e. On ) /\ d e. b ) -> ( ( a +o d ) C_ ( a +no d ) -> ( a +o d ) C_ ( a +no b ) ) ) |
| 40 |
39
|
ralimdva |
|- ( ( a e. On /\ b e. On ) -> ( A. d e. b ( a +o d ) C_ ( a +no d ) -> A. d e. b ( a +o d ) C_ ( a +no b ) ) ) |
| 41 |
40
|
imp |
|- ( ( ( a e. On /\ b e. On ) /\ A. d e. b ( a +o d ) C_ ( a +no d ) ) -> A. d e. b ( a +o d ) C_ ( a +no b ) ) |
| 42 |
|
iunss |
|- ( U_ d e. b ( a +o d ) C_ ( a +no b ) <-> A. d e. b ( a +o d ) C_ ( a +no b ) ) |
| 43 |
41 42
|
sylibr |
|- ( ( ( a e. On /\ b e. On ) /\ A. d e. b ( a +o d ) C_ ( a +no d ) ) -> U_ d e. b ( a +o d ) C_ ( a +no b ) ) |
| 44 |
22 23 43
|
syl2an |
|- ( ( ( ( a e. On /\ b e. On ) /\ Lim b ) /\ ( A. c e. a A. d e. b ( c +o d ) C_ ( c +no d ) /\ A. c e. a ( c +o b ) C_ ( c +no b ) /\ A. d e. b ( a +o d ) C_ ( a +no d ) ) ) -> U_ d e. b ( a +o d ) C_ ( a +no b ) ) |
| 45 |
21 44
|
eqsstrd |
|- ( ( ( ( a e. On /\ b e. On ) /\ Lim b ) /\ ( A. c e. a A. d e. b ( c +o d ) C_ ( c +no d ) /\ A. c e. a ( c +o b ) C_ ( c +no b ) /\ A. d e. b ( a +o d ) C_ ( a +no d ) ) ) -> ( a +o b ) C_ ( a +no b ) ) |
| 46 |
45
|
exp31 |
|- ( ( a e. On /\ b e. On ) -> ( Lim b -> ( ( A. c e. a A. d e. b ( c +o d ) C_ ( c +no d ) /\ A. c e. a ( c +o b ) C_ ( c +no b ) /\ A. d e. b ( a +o d ) C_ ( a +no d ) ) -> ( a +o b ) C_ ( a +no b ) ) ) ) |
| 47 |
|
dflim3 |
|- ( Lim b <-> ( Ord b /\ -. ( b = (/) \/ E. d e. On b = suc d ) ) ) |
| 48 |
47
|
notbii |
|- ( -. Lim b <-> -. ( Ord b /\ -. ( b = (/) \/ E. d e. On b = suc d ) ) ) |
| 49 |
|
iman |
|- ( ( Ord b -> ( b = (/) \/ E. d e. On b = suc d ) ) <-> -. ( Ord b /\ -. ( b = (/) \/ E. d e. On b = suc d ) ) ) |
| 50 |
48 49
|
bitr4i |
|- ( -. Lim b <-> ( Ord b -> ( b = (/) \/ E. d e. On b = suc d ) ) ) |
| 51 |
|
eloni |
|- ( b e. On -> Ord b ) |
| 52 |
|
pm5.5 |
|- ( Ord b -> ( ( Ord b -> ( b = (/) \/ E. d e. On b = suc d ) ) <-> ( b = (/) \/ E. d e. On b = suc d ) ) ) |
| 53 |
25 51 52
|
3syl |
|- ( ( a e. On /\ b e. On ) -> ( ( Ord b -> ( b = (/) \/ E. d e. On b = suc d ) ) <-> ( b = (/) \/ E. d e. On b = suc d ) ) ) |
| 54 |
50 53
|
bitrid |
|- ( ( a e. On /\ b e. On ) -> ( -. Lim b <-> ( b = (/) \/ E. d e. On b = suc d ) ) ) |
| 55 |
|
ssidd |
|- ( ( ( a e. On /\ b e. On ) /\ b = (/) ) -> a C_ a ) |
| 56 |
|
simpr |
|- ( ( ( a e. On /\ b e. On ) /\ b = (/) ) -> b = (/) ) |
| 57 |
56
|
oveq2d |
|- ( ( ( a e. On /\ b e. On ) /\ b = (/) ) -> ( a +o b ) = ( a +o (/) ) ) |
| 58 |
|
simpll |
|- ( ( ( a e. On /\ b e. On ) /\ b = (/) ) -> a e. On ) |
| 59 |
|
oa0 |
|- ( a e. On -> ( a +o (/) ) = a ) |
| 60 |
58 59
|
syl |
|- ( ( ( a e. On /\ b e. On ) /\ b = (/) ) -> ( a +o (/) ) = a ) |
| 61 |
57 60
|
eqtrd |
|- ( ( ( a e. On /\ b e. On ) /\ b = (/) ) -> ( a +o b ) = a ) |
| 62 |
56
|
oveq2d |
|- ( ( ( a e. On /\ b e. On ) /\ b = (/) ) -> ( a +no b ) = ( a +no (/) ) ) |
| 63 |
|
naddrid |
|- ( a e. On -> ( a +no (/) ) = a ) |
| 64 |
58 63
|
syl |
|- ( ( ( a e. On /\ b e. On ) /\ b = (/) ) -> ( a +no (/) ) = a ) |
| 65 |
62 64
|
eqtrd |
|- ( ( ( a e. On /\ b e. On ) /\ b = (/) ) -> ( a +no b ) = a ) |
| 66 |
55 61 65
|
3sstr4d |
|- ( ( ( a e. On /\ b e. On ) /\ b = (/) ) -> ( a +o b ) C_ ( a +no b ) ) |
| 67 |
66
|
a1d |
|- ( ( ( a e. On /\ b e. On ) /\ b = (/) ) -> ( ( A. c e. a A. d e. b ( c +o d ) C_ ( c +no d ) /\ A. c e. a ( c +o b ) C_ ( c +no b ) /\ A. d e. b ( a +o d ) C_ ( a +no d ) ) -> ( a +o b ) C_ ( a +no b ) ) ) |
| 68 |
67
|
ex |
|- ( ( a e. On /\ b e. On ) -> ( b = (/) -> ( ( A. c e. a A. d e. b ( c +o d ) C_ ( c +no d ) /\ A. c e. a ( c +o b ) C_ ( c +no b ) /\ A. d e. b ( a +o d ) C_ ( a +no d ) ) -> ( a +o b ) C_ ( a +no b ) ) ) ) |
| 69 |
|
vex |
|- d e. _V |
| 70 |
69
|
sucid |
|- d e. suc d |
| 71 |
|
simpr |
|- ( ( d e. On /\ b = suc d ) -> b = suc d ) |
| 72 |
70 71
|
eleqtrrid |
|- ( ( d e. On /\ b = suc d ) -> d e. b ) |
| 73 |
72 71
|
jca |
|- ( ( d e. On /\ b = suc d ) -> ( d e. b /\ b = suc d ) ) |
| 74 |
73
|
a1i |
|- ( ( a e. On /\ b e. On ) -> ( ( d e. On /\ b = suc d ) -> ( d e. b /\ b = suc d ) ) ) |
| 75 |
74
|
reximdv2 |
|- ( ( a e. On /\ b e. On ) -> ( E. d e. On b = suc d -> E. d e. b b = suc d ) ) |
| 76 |
|
r19.29r |
|- ( ( E. d e. b b = suc d /\ A. d e. b ( a +o d ) C_ ( a +no d ) ) -> E. d e. b ( b = suc d /\ ( a +o d ) C_ ( a +no d ) ) ) |
| 77 |
|
simprr |
|- ( ( ( ( a e. On /\ b e. On ) /\ d e. b ) /\ ( b = suc d /\ ( a +o d ) C_ ( a +no d ) ) ) -> ( a +o d ) C_ ( a +no d ) ) |
| 78 |
33 32
|
jca |
|- ( ( ( a e. On /\ b e. On ) /\ d e. b ) -> ( a e. On /\ d e. On ) ) |
| 79 |
|
oacl |
|- ( ( a e. On /\ d e. On ) -> ( a +o d ) e. On ) |
| 80 |
|
eloni |
|- ( ( a +o d ) e. On -> Ord ( a +o d ) ) |
| 81 |
79 80
|
syl |
|- ( ( a e. On /\ d e. On ) -> Ord ( a +o d ) ) |
| 82 |
|
naddcl |
|- ( ( a e. On /\ d e. On ) -> ( a +no d ) e. On ) |
| 83 |
|
eloni |
|- ( ( a +no d ) e. On -> Ord ( a +no d ) ) |
| 84 |
82 83
|
syl |
|- ( ( a e. On /\ d e. On ) -> Ord ( a +no d ) ) |
| 85 |
81 84
|
jca |
|- ( ( a e. On /\ d e. On ) -> ( Ord ( a +o d ) /\ Ord ( a +no d ) ) ) |
| 86 |
|
ordsucsssuc |
|- ( ( Ord ( a +o d ) /\ Ord ( a +no d ) ) -> ( ( a +o d ) C_ ( a +no d ) <-> suc ( a +o d ) C_ suc ( a +no d ) ) ) |
| 87 |
78 85 86
|
3syl |
|- ( ( ( a e. On /\ b e. On ) /\ d e. b ) -> ( ( a +o d ) C_ ( a +no d ) <-> suc ( a +o d ) C_ suc ( a +no d ) ) ) |
| 88 |
87
|
adantr |
|- ( ( ( ( a e. On /\ b e. On ) /\ d e. b ) /\ ( b = suc d /\ ( a +o d ) C_ ( a +no d ) ) ) -> ( ( a +o d ) C_ ( a +no d ) <-> suc ( a +o d ) C_ suc ( a +no d ) ) ) |
| 89 |
77 88
|
mpbid |
|- ( ( ( ( a e. On /\ b e. On ) /\ d e. b ) /\ ( b = suc d /\ ( a +o d ) C_ ( a +no d ) ) ) -> suc ( a +o d ) C_ suc ( a +no d ) ) |
| 90 |
|
simprl |
|- ( ( ( ( a e. On /\ b e. On ) /\ d e. b ) /\ ( b = suc d /\ ( a +o d ) C_ ( a +no d ) ) ) -> b = suc d ) |
| 91 |
90
|
oveq2d |
|- ( ( ( ( a e. On /\ b e. On ) /\ d e. b ) /\ ( b = suc d /\ ( a +o d ) C_ ( a +no d ) ) ) -> ( a +o b ) = ( a +o suc d ) ) |
| 92 |
78
|
adantr |
|- ( ( ( ( a e. On /\ b e. On ) /\ d e. b ) /\ ( b = suc d /\ ( a +o d ) C_ ( a +no d ) ) ) -> ( a e. On /\ d e. On ) ) |
| 93 |
|
oasuc |
|- ( ( a e. On /\ d e. On ) -> ( a +o suc d ) = suc ( a +o d ) ) |
| 94 |
92 93
|
syl |
|- ( ( ( ( a e. On /\ b e. On ) /\ d e. b ) /\ ( b = suc d /\ ( a +o d ) C_ ( a +no d ) ) ) -> ( a +o suc d ) = suc ( a +o d ) ) |
| 95 |
91 94
|
eqtrd |
|- ( ( ( ( a e. On /\ b e. On ) /\ d e. b ) /\ ( b = suc d /\ ( a +o d ) C_ ( a +no d ) ) ) -> ( a +o b ) = suc ( a +o d ) ) |
| 96 |
90
|
oveq2d |
|- ( ( ( ( a e. On /\ b e. On ) /\ d e. b ) /\ ( b = suc d /\ ( a +o d ) C_ ( a +no d ) ) ) -> ( a +no b ) = ( a +no suc d ) ) |
| 97 |
|
simplll |
|- ( ( ( ( a e. On /\ b e. On ) /\ d e. b ) /\ ( b = suc d /\ ( a +o d ) C_ ( a +no d ) ) ) -> a e. On ) |
| 98 |
31
|
ad4ant23 |
|- ( ( ( ( a e. On /\ b e. On ) /\ d e. b ) /\ ( b = suc d /\ ( a +o d ) C_ ( a +no d ) ) ) -> d e. On ) |
| 99 |
|
naddsuc2 |
|- ( ( a e. On /\ d e. On ) -> ( a +no suc d ) = suc ( a +no d ) ) |
| 100 |
97 98 99
|
syl2anc |
|- ( ( ( ( a e. On /\ b e. On ) /\ d e. b ) /\ ( b = suc d /\ ( a +o d ) C_ ( a +no d ) ) ) -> ( a +no suc d ) = suc ( a +no d ) ) |
| 101 |
96 100
|
eqtrd |
|- ( ( ( ( a e. On /\ b e. On ) /\ d e. b ) /\ ( b = suc d /\ ( a +o d ) C_ ( a +no d ) ) ) -> ( a +no b ) = suc ( a +no d ) ) |
| 102 |
89 95 101
|
3sstr4d |
|- ( ( ( ( a e. On /\ b e. On ) /\ d e. b ) /\ ( b = suc d /\ ( a +o d ) C_ ( a +no d ) ) ) -> ( a +o b ) C_ ( a +no b ) ) |
| 103 |
102
|
rexlimdva2 |
|- ( ( a e. On /\ b e. On ) -> ( E. d e. b ( b = suc d /\ ( a +o d ) C_ ( a +no d ) ) -> ( a +o b ) C_ ( a +no b ) ) ) |
| 104 |
76 103
|
syl5 |
|- ( ( a e. On /\ b e. On ) -> ( ( E. d e. b b = suc d /\ A. d e. b ( a +o d ) C_ ( a +no d ) ) -> ( a +o b ) C_ ( a +no b ) ) ) |
| 105 |
104
|
expd |
|- ( ( a e. On /\ b e. On ) -> ( E. d e. b b = suc d -> ( A. d e. b ( a +o d ) C_ ( a +no d ) -> ( a +o b ) C_ ( a +no b ) ) ) ) |
| 106 |
23 105
|
syl7 |
|- ( ( a e. On /\ b e. On ) -> ( E. d e. b b = suc d -> ( ( A. c e. a A. d e. b ( c +o d ) C_ ( c +no d ) /\ A. c e. a ( c +o b ) C_ ( c +no b ) /\ A. d e. b ( a +o d ) C_ ( a +no d ) ) -> ( a +o b ) C_ ( a +no b ) ) ) ) |
| 107 |
75 106
|
syld |
|- ( ( a e. On /\ b e. On ) -> ( E. d e. On b = suc d -> ( ( A. c e. a A. d e. b ( c +o d ) C_ ( c +no d ) /\ A. c e. a ( c +o b ) C_ ( c +no b ) /\ A. d e. b ( a +o d ) C_ ( a +no d ) ) -> ( a +o b ) C_ ( a +no b ) ) ) ) |
| 108 |
68 107
|
jaod |
|- ( ( a e. On /\ b e. On ) -> ( ( b = (/) \/ E. d e. On b = suc d ) -> ( ( A. c e. a A. d e. b ( c +o d ) C_ ( c +no d ) /\ A. c e. a ( c +o b ) C_ ( c +no b ) /\ A. d e. b ( a +o d ) C_ ( a +no d ) ) -> ( a +o b ) C_ ( a +no b ) ) ) ) |
| 109 |
54 108
|
sylbid |
|- ( ( a e. On /\ b e. On ) -> ( -. Lim b -> ( ( A. c e. a A. d e. b ( c +o d ) C_ ( c +no d ) /\ A. c e. a ( c +o b ) C_ ( c +no b ) /\ A. d e. b ( a +o d ) C_ ( a +no d ) ) -> ( a +o b ) C_ ( a +no b ) ) ) ) |
| 110 |
46 109
|
pm2.61d |
|- ( ( a e. On /\ b e. On ) -> ( ( A. c e. a A. d e. b ( c +o d ) C_ ( c +no d ) /\ A. c e. a ( c +o b ) C_ ( c +no b ) /\ A. d e. b ( a +o d ) C_ ( a +no d ) ) -> ( a +o b ) C_ ( a +no b ) ) ) |
| 111 |
3 6 9 12 15 110
|
on2ind |
|- ( ( A e. On /\ B e. On ) -> ( A +o B ) C_ ( A +no B ) ) |