Metamath Proof Explorer


Theorem naddgeoa

Description: Natural addition results in a value greater than or equal than that of ordinal addition. (Contributed by RP, 1-Jan-2025)

Ref Expression
Assertion naddgeoa A On B On A + 𝑜 B A + B

Proof

Step Hyp Ref Expression
1 oveq1 a = c a + 𝑜 b = c + 𝑜 b
2 oveq1 a = c a + b = c + b
3 1 2 sseq12d a = c a + 𝑜 b a + b c + 𝑜 b c + b
4 oveq2 b = d c + 𝑜 b = c + 𝑜 d
5 oveq2 b = d c + b = c + d
6 4 5 sseq12d b = d c + 𝑜 b c + b c + 𝑜 d c + d
7 oveq1 a = c a + 𝑜 d = c + 𝑜 d
8 oveq1 a = c a + d = c + d
9 7 8 sseq12d a = c a + 𝑜 d a + d c + 𝑜 d c + d
10 oveq1 a = A a + 𝑜 b = A + 𝑜 b
11 oveq1 a = A a + b = A + b
12 10 11 sseq12d a = A a + 𝑜 b a + b A + 𝑜 b A + b
13 oveq2 b = B A + 𝑜 b = A + 𝑜 B
14 oveq2 b = B A + b = A + B
15 13 14 sseq12d b = B A + 𝑜 b A + b A + 𝑜 B A + B
16 simplll a On b On Lim b c a d b c + 𝑜 d c + d c a c + 𝑜 b c + b d b a + 𝑜 d a + d a On
17 simpllr a On b On Lim b c a d b c + 𝑜 d c + d c a c + 𝑜 b c + b d b a + 𝑜 d a + d b On
18 simplr a On b On Lim b c a d b c + 𝑜 d c + d c a c + 𝑜 b c + b d b a + 𝑜 d a + d Lim b
19 17 18 jca a On b On Lim b c a d b c + 𝑜 d c + d c a c + 𝑜 b c + b d b a + 𝑜 d a + d b On Lim b
20 oalim a On b On Lim b a + 𝑜 b = d b a + 𝑜 d
21 16 19 20 syl2anc a On b On Lim b c a d b c + 𝑜 d c + d c a c + 𝑜 b c + b d b a + 𝑜 d a + d a + 𝑜 b = d b a + 𝑜 d
22 simpl a On b On Lim b a On b On
23 simp3 c a d b c + 𝑜 d c + d c a c + 𝑜 b c + b d b a + 𝑜 d a + d d b a + 𝑜 d a + d
24 simpr a On b On d b a + 𝑜 d a + d a + 𝑜 d a + d
25 simpr a On b On b On
26 onelss b On d b d b
27 25 26 syl a On b On d b d b
28 27 imp a On b On d b d b
29 simplr a On b On d b b On
30 simpr a On b On d b d b
31 onelon b On d b d On
32 29 30 31 syl2anc a On b On d b d On
33 simpll a On b On d b a On
34 naddss2 d On b On a On d b a + d a + b
35 32 29 33 34 syl3anc a On b On d b d b a + d a + b
36 28 35 mpbid a On b On d b a + d a + b
37 36 adantr a On b On d b a + 𝑜 d a + d a + d a + b
38 24 37 sstrd a On b On d b a + 𝑜 d a + d a + 𝑜 d a + b
39 38 ex a On b On d b a + 𝑜 d a + d a + 𝑜 d a + b
40 39 ralimdva a On b On d b a + 𝑜 d a + d d b a + 𝑜 d a + b
41 40 imp a On b On d b a + 𝑜 d a + d d b a + 𝑜 d a + b
42 iunss d b a + 𝑜 d a + b d b a + 𝑜 d a + b
43 41 42 sylibr a On b On d b a + 𝑜 d a + d d b a + 𝑜 d a + b
44 22 23 43 syl2an a On b On Lim b c a d b c + 𝑜 d c + d c a c + 𝑜 b c + b d b a + 𝑜 d a + d d b a + 𝑜 d a + b
45 21 44 eqsstrd a On b On Lim b c a d b c + 𝑜 d c + d c a c + 𝑜 b c + b d b a + 𝑜 d a + d a + 𝑜 b a + b
46 45 exp31 a On b On Lim b c a d b c + 𝑜 d c + d c a c + 𝑜 b c + b d b a + 𝑜 d a + d a + 𝑜 b a + b
47 dflim3 Lim b Ord b ¬ b = d On b = suc d
48 47 notbii ¬ Lim b ¬ Ord b ¬ b = d On b = suc d
49 iman Ord b b = d On b = suc d ¬ Ord b ¬ b = d On b = suc d
50 48 49 bitr4i ¬ Lim b Ord b b = d On b = suc d
51 eloni b On Ord b
52 pm5.5 Ord b Ord b b = d On b = suc d b = d On b = suc d
53 25 51 52 3syl a On b On Ord b b = d On b = suc d b = d On b = suc d
54 50 53 bitrid a On b On ¬ Lim b b = d On b = suc d
55 ssidd a On b On b = a a
56 simpr a On b On b = b =
57 56 oveq2d a On b On b = a + 𝑜 b = a + 𝑜
58 simpll a On b On b = a On
59 oa0 a On a + 𝑜 = a
60 58 59 syl a On b On b = a + 𝑜 = a
61 57 60 eqtrd a On b On b = a + 𝑜 b = a
62 56 oveq2d a On b On b = a + b = a +
63 naddrid a On a + = a
64 58 63 syl a On b On b = a + = a
65 62 64 eqtrd a On b On b = a + b = a
66 55 61 65 3sstr4d a On b On b = a + 𝑜 b a + b
67 66 a1d a On b On b = c a d b c + 𝑜 d c + d c a c + 𝑜 b c + b d b a + 𝑜 d a + d a + 𝑜 b a + b
68 67 ex a On b On b = c a d b c + 𝑜 d c + d c a c + 𝑜 b c + b d b a + 𝑜 d a + d a + 𝑜 b a + b
69 vex d V
70 69 sucid d suc d
71 simpr d On b = suc d b = suc d
72 70 71 eleqtrrid d On b = suc d d b
73 72 71 jca d On b = suc d d b b = suc d
74 73 a1i a On b On d On b = suc d d b b = suc d
75 74 reximdv2 a On b On d On b = suc d d b b = suc d
76 r19.29r d b b = suc d d b a + 𝑜 d a + d d b b = suc d a + 𝑜 d a + d
77 simprr a On b On d b b = suc d a + 𝑜 d a + d a + 𝑜 d a + d
78 33 32 jca a On b On d b a On d On
79 oacl a On d On a + 𝑜 d On
80 eloni a + 𝑜 d On Ord a + 𝑜 d
81 79 80 syl a On d On Ord a + 𝑜 d
82 naddcl a On d On a + d On
83 eloni a + d On Ord a + d
84 82 83 syl a On d On Ord a + d
85 81 84 jca a On d On Ord a + 𝑜 d Ord a + d
86 ordsucsssuc Ord a + 𝑜 d Ord a + d a + 𝑜 d a + d suc a + 𝑜 d suc a + d
87 78 85 86 3syl a On b On d b a + 𝑜 d a + d suc a + 𝑜 d suc a + d
88 87 adantr a On b On d b b = suc d a + 𝑜 d a + d a + 𝑜 d a + d suc a + 𝑜 d suc a + d
89 77 88 mpbid a On b On d b b = suc d a + 𝑜 d a + d suc a + 𝑜 d suc a + d
90 simprl a On b On d b b = suc d a + 𝑜 d a + d b = suc d
91 90 oveq2d a On b On d b b = suc d a + 𝑜 d a + d a + 𝑜 b = a + 𝑜 suc d
92 78 adantr a On b On d b b = suc d a + 𝑜 d a + d a On d On
93 oasuc a On d On a + 𝑜 suc d = suc a + 𝑜 d
94 92 93 syl a On b On d b b = suc d a + 𝑜 d a + d a + 𝑜 suc d = suc a + 𝑜 d
95 91 94 eqtrd a On b On d b b = suc d a + 𝑜 d a + d a + 𝑜 b = suc a + 𝑜 d
96 90 oveq2d a On b On d b b = suc d a + 𝑜 d a + d a + b = a + suc d
97 simplll a On b On d b b = suc d a + 𝑜 d a + d a On
98 31 ad4ant23 a On b On d b b = suc d a + 𝑜 d a + d d On
99 naddsuc2 a On d On a + suc d = suc a + d
100 97 98 99 syl2anc a On b On d b b = suc d a + 𝑜 d a + d a + suc d = suc a + d
101 96 100 eqtrd a On b On d b b = suc d a + 𝑜 d a + d a + b = suc a + d
102 89 95 101 3sstr4d a On b On d b b = suc d a + 𝑜 d a + d a + 𝑜 b a + b
103 102 rexlimdva2 a On b On d b b = suc d a + 𝑜 d a + d a + 𝑜 b a + b
104 76 103 syl5 a On b On d b b = suc d d b a + 𝑜 d a + d a + 𝑜 b a + b
105 104 expd a On b On d b b = suc d d b a + 𝑜 d a + d a + 𝑜 b a + b
106 23 105 syl7 a On b On d b b = suc d c a d b c + 𝑜 d c + d c a c + 𝑜 b c + b d b a + 𝑜 d a + d a + 𝑜 b a + b
107 75 106 syld a On b On d On b = suc d c a d b c + 𝑜 d c + d c a c + 𝑜 b c + b d b a + 𝑜 d a + d a + 𝑜 b a + b
108 68 107 jaod a On b On b = d On b = suc d c a d b c + 𝑜 d c + d c a c + 𝑜 b c + b d b a + 𝑜 d a + d a + 𝑜 b a + b
109 54 108 sylbid a On b On ¬ Lim b c a d b c + 𝑜 d c + d c a c + 𝑜 b c + b d b a + 𝑜 d a + d a + 𝑜 b a + b
110 46 109 pm2.61d a On b On c a d b c + 𝑜 d c + d c a c + 𝑜 b c + b d b a + 𝑜 d a + d a + 𝑜 b a + b
111 3 6 9 12 15 110 on2ind A On B On A + 𝑜 B A + B