| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
|
| 2 |
|
oveq1 |
|
| 3 |
1 2
|
sseq12d |
|
| 4 |
|
oveq2 |
|
| 5 |
|
oveq2 |
|
| 6 |
4 5
|
sseq12d |
|
| 7 |
|
oveq1 |
|
| 8 |
|
oveq1 |
|
| 9 |
7 8
|
sseq12d |
|
| 10 |
|
oveq1 |
|
| 11 |
|
oveq1 |
|
| 12 |
10 11
|
sseq12d |
|
| 13 |
|
oveq2 |
|
| 14 |
|
oveq2 |
|
| 15 |
13 14
|
sseq12d |
|
| 16 |
|
simplll |
|
| 17 |
|
simpllr |
|
| 18 |
|
simplr |
|
| 19 |
17 18
|
jca |
|
| 20 |
|
oalim |
|
| 21 |
16 19 20
|
syl2anc |
|
| 22 |
|
simpl |
|
| 23 |
|
simp3 |
|
| 24 |
|
simpr |
|
| 25 |
|
simpr |
|
| 26 |
|
onelss |
|
| 27 |
25 26
|
syl |
|
| 28 |
27
|
imp |
|
| 29 |
|
simplr |
|
| 30 |
|
simpr |
|
| 31 |
|
onelon |
|
| 32 |
29 30 31
|
syl2anc |
|
| 33 |
|
simpll |
|
| 34 |
|
naddss2 |
|
| 35 |
32 29 33 34
|
syl3anc |
|
| 36 |
28 35
|
mpbid |
|
| 37 |
36
|
adantr |
|
| 38 |
24 37
|
sstrd |
|
| 39 |
38
|
ex |
|
| 40 |
39
|
ralimdva |
|
| 41 |
40
|
imp |
|
| 42 |
|
iunss |
|
| 43 |
41 42
|
sylibr |
|
| 44 |
22 23 43
|
syl2an |
|
| 45 |
21 44
|
eqsstrd |
|
| 46 |
45
|
exp31 |
|
| 47 |
|
dflim3 |
|
| 48 |
47
|
notbii |
|
| 49 |
|
iman |
|
| 50 |
48 49
|
bitr4i |
|
| 51 |
|
eloni |
|
| 52 |
|
pm5.5 |
|
| 53 |
25 51 52
|
3syl |
|
| 54 |
50 53
|
bitrid |
|
| 55 |
|
ssidd |
|
| 56 |
|
simpr |
|
| 57 |
56
|
oveq2d |
|
| 58 |
|
simpll |
|
| 59 |
|
oa0 |
|
| 60 |
58 59
|
syl |
|
| 61 |
57 60
|
eqtrd |
|
| 62 |
56
|
oveq2d |
|
| 63 |
|
naddrid |
|
| 64 |
58 63
|
syl |
|
| 65 |
62 64
|
eqtrd |
|
| 66 |
55 61 65
|
3sstr4d |
|
| 67 |
66
|
a1d |
|
| 68 |
67
|
ex |
|
| 69 |
|
vex |
|
| 70 |
69
|
sucid |
|
| 71 |
|
simpr |
|
| 72 |
70 71
|
eleqtrrid |
|
| 73 |
72 71
|
jca |
|
| 74 |
73
|
a1i |
|
| 75 |
74
|
reximdv2 |
|
| 76 |
|
r19.29r |
|
| 77 |
|
simprr |
|
| 78 |
33 32
|
jca |
|
| 79 |
|
oacl |
|
| 80 |
|
eloni |
|
| 81 |
79 80
|
syl |
|
| 82 |
|
naddcl |
|
| 83 |
|
eloni |
|
| 84 |
82 83
|
syl |
|
| 85 |
81 84
|
jca |
|
| 86 |
|
ordsucsssuc |
|
| 87 |
78 85 86
|
3syl |
|
| 88 |
87
|
adantr |
|
| 89 |
77 88
|
mpbid |
|
| 90 |
|
simprl |
|
| 91 |
90
|
oveq2d |
|
| 92 |
78
|
adantr |
|
| 93 |
|
oasuc |
|
| 94 |
92 93
|
syl |
|
| 95 |
91 94
|
eqtrd |
|
| 96 |
90
|
oveq2d |
|
| 97 |
|
simplll |
|
| 98 |
31
|
ad4ant23 |
|
| 99 |
|
naddsuc2 |
|
| 100 |
97 98 99
|
syl2anc |
|
| 101 |
96 100
|
eqtrd |
|
| 102 |
89 95 101
|
3sstr4d |
|
| 103 |
102
|
rexlimdva2 |
|
| 104 |
76 103
|
syl5 |
|
| 105 |
104
|
expd |
|
| 106 |
23 105
|
syl7 |
|
| 107 |
75 106
|
syld |
|
| 108 |
68 107
|
jaod |
|
| 109 |
54 108
|
sylbid |
|
| 110 |
46 109
|
pm2.61d |
|
| 111 |
3 6 9 12 15 110
|
on2ind |
|