Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
⊢ ( 𝑎 = 𝑐 → ( 𝑎 +o 𝑏 ) = ( 𝑐 +o 𝑏 ) ) |
2 |
|
oveq1 |
⊢ ( 𝑎 = 𝑐 → ( 𝑎 +no 𝑏 ) = ( 𝑐 +no 𝑏 ) ) |
3 |
1 2
|
sseq12d |
⊢ ( 𝑎 = 𝑐 → ( ( 𝑎 +o 𝑏 ) ⊆ ( 𝑎 +no 𝑏 ) ↔ ( 𝑐 +o 𝑏 ) ⊆ ( 𝑐 +no 𝑏 ) ) ) |
4 |
|
oveq2 |
⊢ ( 𝑏 = 𝑑 → ( 𝑐 +o 𝑏 ) = ( 𝑐 +o 𝑑 ) ) |
5 |
|
oveq2 |
⊢ ( 𝑏 = 𝑑 → ( 𝑐 +no 𝑏 ) = ( 𝑐 +no 𝑑 ) ) |
6 |
4 5
|
sseq12d |
⊢ ( 𝑏 = 𝑑 → ( ( 𝑐 +o 𝑏 ) ⊆ ( 𝑐 +no 𝑏 ) ↔ ( 𝑐 +o 𝑑 ) ⊆ ( 𝑐 +no 𝑑 ) ) ) |
7 |
|
oveq1 |
⊢ ( 𝑎 = 𝑐 → ( 𝑎 +o 𝑑 ) = ( 𝑐 +o 𝑑 ) ) |
8 |
|
oveq1 |
⊢ ( 𝑎 = 𝑐 → ( 𝑎 +no 𝑑 ) = ( 𝑐 +no 𝑑 ) ) |
9 |
7 8
|
sseq12d |
⊢ ( 𝑎 = 𝑐 → ( ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ↔ ( 𝑐 +o 𝑑 ) ⊆ ( 𝑐 +no 𝑑 ) ) ) |
10 |
|
oveq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 +o 𝑏 ) = ( 𝐴 +o 𝑏 ) ) |
11 |
|
oveq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 +no 𝑏 ) = ( 𝐴 +no 𝑏 ) ) |
12 |
10 11
|
sseq12d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 +o 𝑏 ) ⊆ ( 𝑎 +no 𝑏 ) ↔ ( 𝐴 +o 𝑏 ) ⊆ ( 𝐴 +no 𝑏 ) ) ) |
13 |
|
oveq2 |
⊢ ( 𝑏 = 𝐵 → ( 𝐴 +o 𝑏 ) = ( 𝐴 +o 𝐵 ) ) |
14 |
|
oveq2 |
⊢ ( 𝑏 = 𝐵 → ( 𝐴 +no 𝑏 ) = ( 𝐴 +no 𝐵 ) ) |
15 |
13 14
|
sseq12d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝐴 +o 𝑏 ) ⊆ ( 𝐴 +no 𝑏 ) ↔ ( 𝐴 +o 𝐵 ) ⊆ ( 𝐴 +no 𝐵 ) ) ) |
16 |
|
simplll |
⊢ ( ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ Lim 𝑏 ) ∧ ( ∀ 𝑐 ∈ 𝑎 ∀ 𝑑 ∈ 𝑏 ( 𝑐 +o 𝑑 ) ⊆ ( 𝑐 +no 𝑑 ) ∧ ∀ 𝑐 ∈ 𝑎 ( 𝑐 +o 𝑏 ) ⊆ ( 𝑐 +no 𝑏 ) ∧ ∀ 𝑑 ∈ 𝑏 ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ) ) → 𝑎 ∈ On ) |
17 |
|
simpllr |
⊢ ( ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ Lim 𝑏 ) ∧ ( ∀ 𝑐 ∈ 𝑎 ∀ 𝑑 ∈ 𝑏 ( 𝑐 +o 𝑑 ) ⊆ ( 𝑐 +no 𝑑 ) ∧ ∀ 𝑐 ∈ 𝑎 ( 𝑐 +o 𝑏 ) ⊆ ( 𝑐 +no 𝑏 ) ∧ ∀ 𝑑 ∈ 𝑏 ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ) ) → 𝑏 ∈ On ) |
18 |
|
simplr |
⊢ ( ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ Lim 𝑏 ) ∧ ( ∀ 𝑐 ∈ 𝑎 ∀ 𝑑 ∈ 𝑏 ( 𝑐 +o 𝑑 ) ⊆ ( 𝑐 +no 𝑑 ) ∧ ∀ 𝑐 ∈ 𝑎 ( 𝑐 +o 𝑏 ) ⊆ ( 𝑐 +no 𝑏 ) ∧ ∀ 𝑑 ∈ 𝑏 ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ) ) → Lim 𝑏 ) |
19 |
17 18
|
jca |
⊢ ( ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ Lim 𝑏 ) ∧ ( ∀ 𝑐 ∈ 𝑎 ∀ 𝑑 ∈ 𝑏 ( 𝑐 +o 𝑑 ) ⊆ ( 𝑐 +no 𝑑 ) ∧ ∀ 𝑐 ∈ 𝑎 ( 𝑐 +o 𝑏 ) ⊆ ( 𝑐 +no 𝑏 ) ∧ ∀ 𝑑 ∈ 𝑏 ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ) ) → ( 𝑏 ∈ On ∧ Lim 𝑏 ) ) |
20 |
|
oalim |
⊢ ( ( 𝑎 ∈ On ∧ ( 𝑏 ∈ On ∧ Lim 𝑏 ) ) → ( 𝑎 +o 𝑏 ) = ∪ 𝑑 ∈ 𝑏 ( 𝑎 +o 𝑑 ) ) |
21 |
16 19 20
|
syl2anc |
⊢ ( ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ Lim 𝑏 ) ∧ ( ∀ 𝑐 ∈ 𝑎 ∀ 𝑑 ∈ 𝑏 ( 𝑐 +o 𝑑 ) ⊆ ( 𝑐 +no 𝑑 ) ∧ ∀ 𝑐 ∈ 𝑎 ( 𝑐 +o 𝑏 ) ⊆ ( 𝑐 +no 𝑏 ) ∧ ∀ 𝑑 ∈ 𝑏 ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ) ) → ( 𝑎 +o 𝑏 ) = ∪ 𝑑 ∈ 𝑏 ( 𝑎 +o 𝑑 ) ) |
22 |
|
simpl |
⊢ ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ Lim 𝑏 ) → ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ) |
23 |
|
simp3 |
⊢ ( ( ∀ 𝑐 ∈ 𝑎 ∀ 𝑑 ∈ 𝑏 ( 𝑐 +o 𝑑 ) ⊆ ( 𝑐 +no 𝑑 ) ∧ ∀ 𝑐 ∈ 𝑎 ( 𝑐 +o 𝑏 ) ⊆ ( 𝑐 +no 𝑏 ) ∧ ∀ 𝑑 ∈ 𝑏 ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ) → ∀ 𝑑 ∈ 𝑏 ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ) |
24 |
|
simpr |
⊢ ( ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ 𝑑 ∈ 𝑏 ) ∧ ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ) → ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ) |
25 |
|
simpr |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) → 𝑏 ∈ On ) |
26 |
|
onelss |
⊢ ( 𝑏 ∈ On → ( 𝑑 ∈ 𝑏 → 𝑑 ⊆ 𝑏 ) ) |
27 |
25 26
|
syl |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) → ( 𝑑 ∈ 𝑏 → 𝑑 ⊆ 𝑏 ) ) |
28 |
27
|
imp |
⊢ ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ 𝑑 ∈ 𝑏 ) → 𝑑 ⊆ 𝑏 ) |
29 |
|
simplr |
⊢ ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ 𝑑 ∈ 𝑏 ) → 𝑏 ∈ On ) |
30 |
|
simpr |
⊢ ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ 𝑑 ∈ 𝑏 ) → 𝑑 ∈ 𝑏 ) |
31 |
|
onelon |
⊢ ( ( 𝑏 ∈ On ∧ 𝑑 ∈ 𝑏 ) → 𝑑 ∈ On ) |
32 |
29 30 31
|
syl2anc |
⊢ ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ 𝑑 ∈ 𝑏 ) → 𝑑 ∈ On ) |
33 |
|
simpll |
⊢ ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ 𝑑 ∈ 𝑏 ) → 𝑎 ∈ On ) |
34 |
|
naddss2 |
⊢ ( ( 𝑑 ∈ On ∧ 𝑏 ∈ On ∧ 𝑎 ∈ On ) → ( 𝑑 ⊆ 𝑏 ↔ ( 𝑎 +no 𝑑 ) ⊆ ( 𝑎 +no 𝑏 ) ) ) |
35 |
32 29 33 34
|
syl3anc |
⊢ ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ 𝑑 ∈ 𝑏 ) → ( 𝑑 ⊆ 𝑏 ↔ ( 𝑎 +no 𝑑 ) ⊆ ( 𝑎 +no 𝑏 ) ) ) |
36 |
28 35
|
mpbid |
⊢ ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ 𝑑 ∈ 𝑏 ) → ( 𝑎 +no 𝑑 ) ⊆ ( 𝑎 +no 𝑏 ) ) |
37 |
36
|
adantr |
⊢ ( ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ 𝑑 ∈ 𝑏 ) ∧ ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ) → ( 𝑎 +no 𝑑 ) ⊆ ( 𝑎 +no 𝑏 ) ) |
38 |
24 37
|
sstrd |
⊢ ( ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ 𝑑 ∈ 𝑏 ) ∧ ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ) → ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑏 ) ) |
39 |
38
|
ex |
⊢ ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ 𝑑 ∈ 𝑏 ) → ( ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) → ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑏 ) ) ) |
40 |
39
|
ralimdva |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) → ( ∀ 𝑑 ∈ 𝑏 ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) → ∀ 𝑑 ∈ 𝑏 ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑏 ) ) ) |
41 |
40
|
imp |
⊢ ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ ∀ 𝑑 ∈ 𝑏 ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ) → ∀ 𝑑 ∈ 𝑏 ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑏 ) ) |
42 |
|
iunss |
⊢ ( ∪ 𝑑 ∈ 𝑏 ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑏 ) ↔ ∀ 𝑑 ∈ 𝑏 ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑏 ) ) |
43 |
41 42
|
sylibr |
⊢ ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ ∀ 𝑑 ∈ 𝑏 ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ) → ∪ 𝑑 ∈ 𝑏 ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑏 ) ) |
44 |
22 23 43
|
syl2an |
⊢ ( ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ Lim 𝑏 ) ∧ ( ∀ 𝑐 ∈ 𝑎 ∀ 𝑑 ∈ 𝑏 ( 𝑐 +o 𝑑 ) ⊆ ( 𝑐 +no 𝑑 ) ∧ ∀ 𝑐 ∈ 𝑎 ( 𝑐 +o 𝑏 ) ⊆ ( 𝑐 +no 𝑏 ) ∧ ∀ 𝑑 ∈ 𝑏 ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ) ) → ∪ 𝑑 ∈ 𝑏 ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑏 ) ) |
45 |
21 44
|
eqsstrd |
⊢ ( ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ Lim 𝑏 ) ∧ ( ∀ 𝑐 ∈ 𝑎 ∀ 𝑑 ∈ 𝑏 ( 𝑐 +o 𝑑 ) ⊆ ( 𝑐 +no 𝑑 ) ∧ ∀ 𝑐 ∈ 𝑎 ( 𝑐 +o 𝑏 ) ⊆ ( 𝑐 +no 𝑏 ) ∧ ∀ 𝑑 ∈ 𝑏 ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ) ) → ( 𝑎 +o 𝑏 ) ⊆ ( 𝑎 +no 𝑏 ) ) |
46 |
45
|
exp31 |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) → ( Lim 𝑏 → ( ( ∀ 𝑐 ∈ 𝑎 ∀ 𝑑 ∈ 𝑏 ( 𝑐 +o 𝑑 ) ⊆ ( 𝑐 +no 𝑑 ) ∧ ∀ 𝑐 ∈ 𝑎 ( 𝑐 +o 𝑏 ) ⊆ ( 𝑐 +no 𝑏 ) ∧ ∀ 𝑑 ∈ 𝑏 ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ) → ( 𝑎 +o 𝑏 ) ⊆ ( 𝑎 +no 𝑏 ) ) ) ) |
47 |
|
dflim3 |
⊢ ( Lim 𝑏 ↔ ( Ord 𝑏 ∧ ¬ ( 𝑏 = ∅ ∨ ∃ 𝑑 ∈ On 𝑏 = suc 𝑑 ) ) ) |
48 |
47
|
notbii |
⊢ ( ¬ Lim 𝑏 ↔ ¬ ( Ord 𝑏 ∧ ¬ ( 𝑏 = ∅ ∨ ∃ 𝑑 ∈ On 𝑏 = suc 𝑑 ) ) ) |
49 |
|
iman |
⊢ ( ( Ord 𝑏 → ( 𝑏 = ∅ ∨ ∃ 𝑑 ∈ On 𝑏 = suc 𝑑 ) ) ↔ ¬ ( Ord 𝑏 ∧ ¬ ( 𝑏 = ∅ ∨ ∃ 𝑑 ∈ On 𝑏 = suc 𝑑 ) ) ) |
50 |
48 49
|
bitr4i |
⊢ ( ¬ Lim 𝑏 ↔ ( Ord 𝑏 → ( 𝑏 = ∅ ∨ ∃ 𝑑 ∈ On 𝑏 = suc 𝑑 ) ) ) |
51 |
|
eloni |
⊢ ( 𝑏 ∈ On → Ord 𝑏 ) |
52 |
|
pm5.5 |
⊢ ( Ord 𝑏 → ( ( Ord 𝑏 → ( 𝑏 = ∅ ∨ ∃ 𝑑 ∈ On 𝑏 = suc 𝑑 ) ) ↔ ( 𝑏 = ∅ ∨ ∃ 𝑑 ∈ On 𝑏 = suc 𝑑 ) ) ) |
53 |
25 51 52
|
3syl |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) → ( ( Ord 𝑏 → ( 𝑏 = ∅ ∨ ∃ 𝑑 ∈ On 𝑏 = suc 𝑑 ) ) ↔ ( 𝑏 = ∅ ∨ ∃ 𝑑 ∈ On 𝑏 = suc 𝑑 ) ) ) |
54 |
50 53
|
bitrid |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) → ( ¬ Lim 𝑏 ↔ ( 𝑏 = ∅ ∨ ∃ 𝑑 ∈ On 𝑏 = suc 𝑑 ) ) ) |
55 |
|
ssidd |
⊢ ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ 𝑏 = ∅ ) → 𝑎 ⊆ 𝑎 ) |
56 |
|
simpr |
⊢ ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ 𝑏 = ∅ ) → 𝑏 = ∅ ) |
57 |
56
|
oveq2d |
⊢ ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ 𝑏 = ∅ ) → ( 𝑎 +o 𝑏 ) = ( 𝑎 +o ∅ ) ) |
58 |
|
simpll |
⊢ ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ 𝑏 = ∅ ) → 𝑎 ∈ On ) |
59 |
|
oa0 |
⊢ ( 𝑎 ∈ On → ( 𝑎 +o ∅ ) = 𝑎 ) |
60 |
58 59
|
syl |
⊢ ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ 𝑏 = ∅ ) → ( 𝑎 +o ∅ ) = 𝑎 ) |
61 |
57 60
|
eqtrd |
⊢ ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ 𝑏 = ∅ ) → ( 𝑎 +o 𝑏 ) = 𝑎 ) |
62 |
56
|
oveq2d |
⊢ ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ 𝑏 = ∅ ) → ( 𝑎 +no 𝑏 ) = ( 𝑎 +no ∅ ) ) |
63 |
|
naddrid |
⊢ ( 𝑎 ∈ On → ( 𝑎 +no ∅ ) = 𝑎 ) |
64 |
58 63
|
syl |
⊢ ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ 𝑏 = ∅ ) → ( 𝑎 +no ∅ ) = 𝑎 ) |
65 |
62 64
|
eqtrd |
⊢ ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ 𝑏 = ∅ ) → ( 𝑎 +no 𝑏 ) = 𝑎 ) |
66 |
55 61 65
|
3sstr4d |
⊢ ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ 𝑏 = ∅ ) → ( 𝑎 +o 𝑏 ) ⊆ ( 𝑎 +no 𝑏 ) ) |
67 |
66
|
a1d |
⊢ ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ 𝑏 = ∅ ) → ( ( ∀ 𝑐 ∈ 𝑎 ∀ 𝑑 ∈ 𝑏 ( 𝑐 +o 𝑑 ) ⊆ ( 𝑐 +no 𝑑 ) ∧ ∀ 𝑐 ∈ 𝑎 ( 𝑐 +o 𝑏 ) ⊆ ( 𝑐 +no 𝑏 ) ∧ ∀ 𝑑 ∈ 𝑏 ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ) → ( 𝑎 +o 𝑏 ) ⊆ ( 𝑎 +no 𝑏 ) ) ) |
68 |
67
|
ex |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) → ( 𝑏 = ∅ → ( ( ∀ 𝑐 ∈ 𝑎 ∀ 𝑑 ∈ 𝑏 ( 𝑐 +o 𝑑 ) ⊆ ( 𝑐 +no 𝑑 ) ∧ ∀ 𝑐 ∈ 𝑎 ( 𝑐 +o 𝑏 ) ⊆ ( 𝑐 +no 𝑏 ) ∧ ∀ 𝑑 ∈ 𝑏 ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ) → ( 𝑎 +o 𝑏 ) ⊆ ( 𝑎 +no 𝑏 ) ) ) ) |
69 |
|
vex |
⊢ 𝑑 ∈ V |
70 |
69
|
sucid |
⊢ 𝑑 ∈ suc 𝑑 |
71 |
|
simpr |
⊢ ( ( 𝑑 ∈ On ∧ 𝑏 = suc 𝑑 ) → 𝑏 = suc 𝑑 ) |
72 |
70 71
|
eleqtrrid |
⊢ ( ( 𝑑 ∈ On ∧ 𝑏 = suc 𝑑 ) → 𝑑 ∈ 𝑏 ) |
73 |
72 71
|
jca |
⊢ ( ( 𝑑 ∈ On ∧ 𝑏 = suc 𝑑 ) → ( 𝑑 ∈ 𝑏 ∧ 𝑏 = suc 𝑑 ) ) |
74 |
73
|
a1i |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) → ( ( 𝑑 ∈ On ∧ 𝑏 = suc 𝑑 ) → ( 𝑑 ∈ 𝑏 ∧ 𝑏 = suc 𝑑 ) ) ) |
75 |
74
|
reximdv2 |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) → ( ∃ 𝑑 ∈ On 𝑏 = suc 𝑑 → ∃ 𝑑 ∈ 𝑏 𝑏 = suc 𝑑 ) ) |
76 |
|
r19.29r |
⊢ ( ( ∃ 𝑑 ∈ 𝑏 𝑏 = suc 𝑑 ∧ ∀ 𝑑 ∈ 𝑏 ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ) → ∃ 𝑑 ∈ 𝑏 ( 𝑏 = suc 𝑑 ∧ ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ) ) |
77 |
|
simprr |
⊢ ( ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ 𝑑 ∈ 𝑏 ) ∧ ( 𝑏 = suc 𝑑 ∧ ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ) ) → ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ) |
78 |
33 32
|
jca |
⊢ ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ 𝑑 ∈ 𝑏 ) → ( 𝑎 ∈ On ∧ 𝑑 ∈ On ) ) |
79 |
|
oacl |
⊢ ( ( 𝑎 ∈ On ∧ 𝑑 ∈ On ) → ( 𝑎 +o 𝑑 ) ∈ On ) |
80 |
|
eloni |
⊢ ( ( 𝑎 +o 𝑑 ) ∈ On → Ord ( 𝑎 +o 𝑑 ) ) |
81 |
79 80
|
syl |
⊢ ( ( 𝑎 ∈ On ∧ 𝑑 ∈ On ) → Ord ( 𝑎 +o 𝑑 ) ) |
82 |
|
naddcl |
⊢ ( ( 𝑎 ∈ On ∧ 𝑑 ∈ On ) → ( 𝑎 +no 𝑑 ) ∈ On ) |
83 |
|
eloni |
⊢ ( ( 𝑎 +no 𝑑 ) ∈ On → Ord ( 𝑎 +no 𝑑 ) ) |
84 |
82 83
|
syl |
⊢ ( ( 𝑎 ∈ On ∧ 𝑑 ∈ On ) → Ord ( 𝑎 +no 𝑑 ) ) |
85 |
81 84
|
jca |
⊢ ( ( 𝑎 ∈ On ∧ 𝑑 ∈ On ) → ( Ord ( 𝑎 +o 𝑑 ) ∧ Ord ( 𝑎 +no 𝑑 ) ) ) |
86 |
|
ordsucsssuc |
⊢ ( ( Ord ( 𝑎 +o 𝑑 ) ∧ Ord ( 𝑎 +no 𝑑 ) ) → ( ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ↔ suc ( 𝑎 +o 𝑑 ) ⊆ suc ( 𝑎 +no 𝑑 ) ) ) |
87 |
78 85 86
|
3syl |
⊢ ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ 𝑑 ∈ 𝑏 ) → ( ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ↔ suc ( 𝑎 +o 𝑑 ) ⊆ suc ( 𝑎 +no 𝑑 ) ) ) |
88 |
87
|
adantr |
⊢ ( ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ 𝑑 ∈ 𝑏 ) ∧ ( 𝑏 = suc 𝑑 ∧ ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ) ) → ( ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ↔ suc ( 𝑎 +o 𝑑 ) ⊆ suc ( 𝑎 +no 𝑑 ) ) ) |
89 |
77 88
|
mpbid |
⊢ ( ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ 𝑑 ∈ 𝑏 ) ∧ ( 𝑏 = suc 𝑑 ∧ ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ) ) → suc ( 𝑎 +o 𝑑 ) ⊆ suc ( 𝑎 +no 𝑑 ) ) |
90 |
|
simprl |
⊢ ( ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ 𝑑 ∈ 𝑏 ) ∧ ( 𝑏 = suc 𝑑 ∧ ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ) ) → 𝑏 = suc 𝑑 ) |
91 |
90
|
oveq2d |
⊢ ( ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ 𝑑 ∈ 𝑏 ) ∧ ( 𝑏 = suc 𝑑 ∧ ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ) ) → ( 𝑎 +o 𝑏 ) = ( 𝑎 +o suc 𝑑 ) ) |
92 |
78
|
adantr |
⊢ ( ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ 𝑑 ∈ 𝑏 ) ∧ ( 𝑏 = suc 𝑑 ∧ ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ) ) → ( 𝑎 ∈ On ∧ 𝑑 ∈ On ) ) |
93 |
|
oasuc |
⊢ ( ( 𝑎 ∈ On ∧ 𝑑 ∈ On ) → ( 𝑎 +o suc 𝑑 ) = suc ( 𝑎 +o 𝑑 ) ) |
94 |
92 93
|
syl |
⊢ ( ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ 𝑑 ∈ 𝑏 ) ∧ ( 𝑏 = suc 𝑑 ∧ ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ) ) → ( 𝑎 +o suc 𝑑 ) = suc ( 𝑎 +o 𝑑 ) ) |
95 |
91 94
|
eqtrd |
⊢ ( ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ 𝑑 ∈ 𝑏 ) ∧ ( 𝑏 = suc 𝑑 ∧ ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ) ) → ( 𝑎 +o 𝑏 ) = suc ( 𝑎 +o 𝑑 ) ) |
96 |
90
|
oveq2d |
⊢ ( ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ 𝑑 ∈ 𝑏 ) ∧ ( 𝑏 = suc 𝑑 ∧ ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ) ) → ( 𝑎 +no 𝑏 ) = ( 𝑎 +no suc 𝑑 ) ) |
97 |
|
simplll |
⊢ ( ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ 𝑑 ∈ 𝑏 ) ∧ ( 𝑏 = suc 𝑑 ∧ ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ) ) → 𝑎 ∈ On ) |
98 |
31
|
ad4ant23 |
⊢ ( ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ 𝑑 ∈ 𝑏 ) ∧ ( 𝑏 = suc 𝑑 ∧ ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ) ) → 𝑑 ∈ On ) |
99 |
|
naddsuc2 |
⊢ ( ( 𝑎 ∈ On ∧ 𝑑 ∈ On ) → ( 𝑎 +no suc 𝑑 ) = suc ( 𝑎 +no 𝑑 ) ) |
100 |
97 98 99
|
syl2anc |
⊢ ( ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ 𝑑 ∈ 𝑏 ) ∧ ( 𝑏 = suc 𝑑 ∧ ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ) ) → ( 𝑎 +no suc 𝑑 ) = suc ( 𝑎 +no 𝑑 ) ) |
101 |
96 100
|
eqtrd |
⊢ ( ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ 𝑑 ∈ 𝑏 ) ∧ ( 𝑏 = suc 𝑑 ∧ ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ) ) → ( 𝑎 +no 𝑏 ) = suc ( 𝑎 +no 𝑑 ) ) |
102 |
89 95 101
|
3sstr4d |
⊢ ( ( ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) ∧ 𝑑 ∈ 𝑏 ) ∧ ( 𝑏 = suc 𝑑 ∧ ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ) ) → ( 𝑎 +o 𝑏 ) ⊆ ( 𝑎 +no 𝑏 ) ) |
103 |
102
|
rexlimdva2 |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) → ( ∃ 𝑑 ∈ 𝑏 ( 𝑏 = suc 𝑑 ∧ ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ) → ( 𝑎 +o 𝑏 ) ⊆ ( 𝑎 +no 𝑏 ) ) ) |
104 |
76 103
|
syl5 |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) → ( ( ∃ 𝑑 ∈ 𝑏 𝑏 = suc 𝑑 ∧ ∀ 𝑑 ∈ 𝑏 ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ) → ( 𝑎 +o 𝑏 ) ⊆ ( 𝑎 +no 𝑏 ) ) ) |
105 |
104
|
expd |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) → ( ∃ 𝑑 ∈ 𝑏 𝑏 = suc 𝑑 → ( ∀ 𝑑 ∈ 𝑏 ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) → ( 𝑎 +o 𝑏 ) ⊆ ( 𝑎 +no 𝑏 ) ) ) ) |
106 |
23 105
|
syl7 |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) → ( ∃ 𝑑 ∈ 𝑏 𝑏 = suc 𝑑 → ( ( ∀ 𝑐 ∈ 𝑎 ∀ 𝑑 ∈ 𝑏 ( 𝑐 +o 𝑑 ) ⊆ ( 𝑐 +no 𝑑 ) ∧ ∀ 𝑐 ∈ 𝑎 ( 𝑐 +o 𝑏 ) ⊆ ( 𝑐 +no 𝑏 ) ∧ ∀ 𝑑 ∈ 𝑏 ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ) → ( 𝑎 +o 𝑏 ) ⊆ ( 𝑎 +no 𝑏 ) ) ) ) |
107 |
75 106
|
syld |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) → ( ∃ 𝑑 ∈ On 𝑏 = suc 𝑑 → ( ( ∀ 𝑐 ∈ 𝑎 ∀ 𝑑 ∈ 𝑏 ( 𝑐 +o 𝑑 ) ⊆ ( 𝑐 +no 𝑑 ) ∧ ∀ 𝑐 ∈ 𝑎 ( 𝑐 +o 𝑏 ) ⊆ ( 𝑐 +no 𝑏 ) ∧ ∀ 𝑑 ∈ 𝑏 ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ) → ( 𝑎 +o 𝑏 ) ⊆ ( 𝑎 +no 𝑏 ) ) ) ) |
108 |
68 107
|
jaod |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) → ( ( 𝑏 = ∅ ∨ ∃ 𝑑 ∈ On 𝑏 = suc 𝑑 ) → ( ( ∀ 𝑐 ∈ 𝑎 ∀ 𝑑 ∈ 𝑏 ( 𝑐 +o 𝑑 ) ⊆ ( 𝑐 +no 𝑑 ) ∧ ∀ 𝑐 ∈ 𝑎 ( 𝑐 +o 𝑏 ) ⊆ ( 𝑐 +no 𝑏 ) ∧ ∀ 𝑑 ∈ 𝑏 ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ) → ( 𝑎 +o 𝑏 ) ⊆ ( 𝑎 +no 𝑏 ) ) ) ) |
109 |
54 108
|
sylbid |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) → ( ¬ Lim 𝑏 → ( ( ∀ 𝑐 ∈ 𝑎 ∀ 𝑑 ∈ 𝑏 ( 𝑐 +o 𝑑 ) ⊆ ( 𝑐 +no 𝑑 ) ∧ ∀ 𝑐 ∈ 𝑎 ( 𝑐 +o 𝑏 ) ⊆ ( 𝑐 +no 𝑏 ) ∧ ∀ 𝑑 ∈ 𝑏 ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ) → ( 𝑎 +o 𝑏 ) ⊆ ( 𝑎 +no 𝑏 ) ) ) ) |
110 |
46 109
|
pm2.61d |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) → ( ( ∀ 𝑐 ∈ 𝑎 ∀ 𝑑 ∈ 𝑏 ( 𝑐 +o 𝑑 ) ⊆ ( 𝑐 +no 𝑑 ) ∧ ∀ 𝑐 ∈ 𝑎 ( 𝑐 +o 𝑏 ) ⊆ ( 𝑐 +no 𝑏 ) ∧ ∀ 𝑑 ∈ 𝑏 ( 𝑎 +o 𝑑 ) ⊆ ( 𝑎 +no 𝑑 ) ) → ( 𝑎 +o 𝑏 ) ⊆ ( 𝑎 +no 𝑏 ) ) ) |
111 |
3 6 9 12 15 110
|
on2ind |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) ⊆ ( 𝐴 +no 𝐵 ) ) |