Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o ∅ ) ) |
2 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐴 +no 𝑥 ) = ( 𝐴 +no ∅ ) ) |
3 |
1 2
|
eqeq12d |
⊢ ( 𝑥 = ∅ → ( ( 𝐴 +o 𝑥 ) = ( 𝐴 +no 𝑥 ) ↔ ( 𝐴 +o ∅ ) = ( 𝐴 +no ∅ ) ) ) |
4 |
3
|
imbi2d |
⊢ ( 𝑥 = ∅ → ( ( 𝐴 ∈ On → ( 𝐴 +o 𝑥 ) = ( 𝐴 +no 𝑥 ) ) ↔ ( 𝐴 ∈ On → ( 𝐴 +o ∅ ) = ( 𝐴 +no ∅ ) ) ) ) |
5 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o 𝑦 ) ) |
6 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 +no 𝑥 ) = ( 𝐴 +no 𝑦 ) ) |
7 |
5 6
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 +o 𝑥 ) = ( 𝐴 +no 𝑥 ) ↔ ( 𝐴 +o 𝑦 ) = ( 𝐴 +no 𝑦 ) ) ) |
8 |
7
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∈ On → ( 𝐴 +o 𝑥 ) = ( 𝐴 +no 𝑥 ) ) ↔ ( 𝐴 ∈ On → ( 𝐴 +o 𝑦 ) = ( 𝐴 +no 𝑦 ) ) ) ) |
9 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o suc 𝑦 ) ) |
10 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 +no 𝑥 ) = ( 𝐴 +no suc 𝑦 ) ) |
11 |
9 10
|
eqeq12d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 +o 𝑥 ) = ( 𝐴 +no 𝑥 ) ↔ ( 𝐴 +o suc 𝑦 ) = ( 𝐴 +no suc 𝑦 ) ) ) |
12 |
11
|
imbi2d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ∈ On → ( 𝐴 +o 𝑥 ) = ( 𝐴 +no 𝑥 ) ) ↔ ( 𝐴 ∈ On → ( 𝐴 +o suc 𝑦 ) = ( 𝐴 +no suc 𝑦 ) ) ) ) |
13 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o 𝐵 ) ) |
14 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 +no 𝑥 ) = ( 𝐴 +no 𝐵 ) ) |
15 |
13 14
|
eqeq12d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 +o 𝑥 ) = ( 𝐴 +no 𝑥 ) ↔ ( 𝐴 +o 𝐵 ) = ( 𝐴 +no 𝐵 ) ) ) |
16 |
15
|
imbi2d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ∈ On → ( 𝐴 +o 𝑥 ) = ( 𝐴 +no 𝑥 ) ) ↔ ( 𝐴 ∈ On → ( 𝐴 +o 𝐵 ) = ( 𝐴 +no 𝐵 ) ) ) ) |
17 |
|
oa0 |
⊢ ( 𝐴 ∈ On → ( 𝐴 +o ∅ ) = 𝐴 ) |
18 |
|
naddrid |
⊢ ( 𝐴 ∈ On → ( 𝐴 +no ∅ ) = 𝐴 ) |
19 |
17 18
|
eqtr4d |
⊢ ( 𝐴 ∈ On → ( 𝐴 +o ∅ ) = ( 𝐴 +no ∅ ) ) |
20 |
|
nnon |
⊢ ( 𝑦 ∈ ω → 𝑦 ∈ On ) |
21 |
|
suceq |
⊢ ( ( 𝐴 +o 𝑦 ) = ( 𝐴 +no 𝑦 ) → suc ( 𝐴 +o 𝑦 ) = suc ( 𝐴 +no 𝑦 ) ) |
22 |
21
|
adantl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐴 +o 𝑦 ) = ( 𝐴 +no 𝑦 ) ) → suc ( 𝐴 +o 𝑦 ) = suc ( 𝐴 +no 𝑦 ) ) |
23 |
|
oasuc |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 +o suc 𝑦 ) = suc ( 𝐴 +o 𝑦 ) ) |
24 |
23
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐴 +o 𝑦 ) = ( 𝐴 +no 𝑦 ) ) → ( 𝐴 +o suc 𝑦 ) = suc ( 𝐴 +o 𝑦 ) ) |
25 |
|
naddsuc2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 +no suc 𝑦 ) = suc ( 𝐴 +no 𝑦 ) ) |
26 |
25
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐴 +o 𝑦 ) = ( 𝐴 +no 𝑦 ) ) → ( 𝐴 +no suc 𝑦 ) = suc ( 𝐴 +no 𝑦 ) ) |
27 |
22 24 26
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐴 +o 𝑦 ) = ( 𝐴 +no 𝑦 ) ) → ( 𝐴 +o suc 𝑦 ) = ( 𝐴 +no suc 𝑦 ) ) |
28 |
27
|
ex |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐴 +o 𝑦 ) = ( 𝐴 +no 𝑦 ) → ( 𝐴 +o suc 𝑦 ) = ( 𝐴 +no suc 𝑦 ) ) ) |
29 |
28
|
expcom |
⊢ ( 𝑦 ∈ On → ( 𝐴 ∈ On → ( ( 𝐴 +o 𝑦 ) = ( 𝐴 +no 𝑦 ) → ( 𝐴 +o suc 𝑦 ) = ( 𝐴 +no suc 𝑦 ) ) ) ) |
30 |
20 29
|
syl |
⊢ ( 𝑦 ∈ ω → ( 𝐴 ∈ On → ( ( 𝐴 +o 𝑦 ) = ( 𝐴 +no 𝑦 ) → ( 𝐴 +o suc 𝑦 ) = ( 𝐴 +no suc 𝑦 ) ) ) ) |
31 |
30
|
a2d |
⊢ ( 𝑦 ∈ ω → ( ( 𝐴 ∈ On → ( 𝐴 +o 𝑦 ) = ( 𝐴 +no 𝑦 ) ) → ( 𝐴 ∈ On → ( 𝐴 +o suc 𝑦 ) = ( 𝐴 +no suc 𝑦 ) ) ) ) |
32 |
4 8 12 16 19 31
|
finds |
⊢ ( 𝐵 ∈ ω → ( 𝐴 ∈ On → ( 𝐴 +o 𝐵 ) = ( 𝐴 +no 𝐵 ) ) ) |
33 |
32
|
impcom |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 +o 𝐵 ) = ( 𝐴 +no 𝐵 ) ) |