| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o ∅ ) ) |
| 2 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐴 +no 𝑥 ) = ( 𝐴 +no ∅ ) ) |
| 3 |
1 2
|
eqeq12d |
⊢ ( 𝑥 = ∅ → ( ( 𝐴 +o 𝑥 ) = ( 𝐴 +no 𝑥 ) ↔ ( 𝐴 +o ∅ ) = ( 𝐴 +no ∅ ) ) ) |
| 4 |
3
|
imbi2d |
⊢ ( 𝑥 = ∅ → ( ( 𝐴 ∈ On → ( 𝐴 +o 𝑥 ) = ( 𝐴 +no 𝑥 ) ) ↔ ( 𝐴 ∈ On → ( 𝐴 +o ∅ ) = ( 𝐴 +no ∅ ) ) ) ) |
| 5 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o 𝑦 ) ) |
| 6 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 +no 𝑥 ) = ( 𝐴 +no 𝑦 ) ) |
| 7 |
5 6
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 +o 𝑥 ) = ( 𝐴 +no 𝑥 ) ↔ ( 𝐴 +o 𝑦 ) = ( 𝐴 +no 𝑦 ) ) ) |
| 8 |
7
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∈ On → ( 𝐴 +o 𝑥 ) = ( 𝐴 +no 𝑥 ) ) ↔ ( 𝐴 ∈ On → ( 𝐴 +o 𝑦 ) = ( 𝐴 +no 𝑦 ) ) ) ) |
| 9 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o suc 𝑦 ) ) |
| 10 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 +no 𝑥 ) = ( 𝐴 +no suc 𝑦 ) ) |
| 11 |
9 10
|
eqeq12d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 +o 𝑥 ) = ( 𝐴 +no 𝑥 ) ↔ ( 𝐴 +o suc 𝑦 ) = ( 𝐴 +no suc 𝑦 ) ) ) |
| 12 |
11
|
imbi2d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ∈ On → ( 𝐴 +o 𝑥 ) = ( 𝐴 +no 𝑥 ) ) ↔ ( 𝐴 ∈ On → ( 𝐴 +o suc 𝑦 ) = ( 𝐴 +no suc 𝑦 ) ) ) ) |
| 13 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o 𝐵 ) ) |
| 14 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 +no 𝑥 ) = ( 𝐴 +no 𝐵 ) ) |
| 15 |
13 14
|
eqeq12d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 +o 𝑥 ) = ( 𝐴 +no 𝑥 ) ↔ ( 𝐴 +o 𝐵 ) = ( 𝐴 +no 𝐵 ) ) ) |
| 16 |
15
|
imbi2d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ∈ On → ( 𝐴 +o 𝑥 ) = ( 𝐴 +no 𝑥 ) ) ↔ ( 𝐴 ∈ On → ( 𝐴 +o 𝐵 ) = ( 𝐴 +no 𝐵 ) ) ) ) |
| 17 |
|
oa0 |
⊢ ( 𝐴 ∈ On → ( 𝐴 +o ∅ ) = 𝐴 ) |
| 18 |
|
naddrid |
⊢ ( 𝐴 ∈ On → ( 𝐴 +no ∅ ) = 𝐴 ) |
| 19 |
17 18
|
eqtr4d |
⊢ ( 𝐴 ∈ On → ( 𝐴 +o ∅ ) = ( 𝐴 +no ∅ ) ) |
| 20 |
|
nnon |
⊢ ( 𝑦 ∈ ω → 𝑦 ∈ On ) |
| 21 |
|
suceq |
⊢ ( ( 𝐴 +o 𝑦 ) = ( 𝐴 +no 𝑦 ) → suc ( 𝐴 +o 𝑦 ) = suc ( 𝐴 +no 𝑦 ) ) |
| 22 |
21
|
adantl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐴 +o 𝑦 ) = ( 𝐴 +no 𝑦 ) ) → suc ( 𝐴 +o 𝑦 ) = suc ( 𝐴 +no 𝑦 ) ) |
| 23 |
|
oasuc |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 +o suc 𝑦 ) = suc ( 𝐴 +o 𝑦 ) ) |
| 24 |
23
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐴 +o 𝑦 ) = ( 𝐴 +no 𝑦 ) ) → ( 𝐴 +o suc 𝑦 ) = suc ( 𝐴 +o 𝑦 ) ) |
| 25 |
|
naddsuc2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 +no suc 𝑦 ) = suc ( 𝐴 +no 𝑦 ) ) |
| 26 |
25
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐴 +o 𝑦 ) = ( 𝐴 +no 𝑦 ) ) → ( 𝐴 +no suc 𝑦 ) = suc ( 𝐴 +no 𝑦 ) ) |
| 27 |
22 24 26
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐴 +o 𝑦 ) = ( 𝐴 +no 𝑦 ) ) → ( 𝐴 +o suc 𝑦 ) = ( 𝐴 +no suc 𝑦 ) ) |
| 28 |
27
|
ex |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐴 +o 𝑦 ) = ( 𝐴 +no 𝑦 ) → ( 𝐴 +o suc 𝑦 ) = ( 𝐴 +no suc 𝑦 ) ) ) |
| 29 |
28
|
expcom |
⊢ ( 𝑦 ∈ On → ( 𝐴 ∈ On → ( ( 𝐴 +o 𝑦 ) = ( 𝐴 +no 𝑦 ) → ( 𝐴 +o suc 𝑦 ) = ( 𝐴 +no suc 𝑦 ) ) ) ) |
| 30 |
20 29
|
syl |
⊢ ( 𝑦 ∈ ω → ( 𝐴 ∈ On → ( ( 𝐴 +o 𝑦 ) = ( 𝐴 +no 𝑦 ) → ( 𝐴 +o suc 𝑦 ) = ( 𝐴 +no suc 𝑦 ) ) ) ) |
| 31 |
30
|
a2d |
⊢ ( 𝑦 ∈ ω → ( ( 𝐴 ∈ On → ( 𝐴 +o 𝑦 ) = ( 𝐴 +no 𝑦 ) ) → ( 𝐴 ∈ On → ( 𝐴 +o suc 𝑦 ) = ( 𝐴 +no suc 𝑦 ) ) ) ) |
| 32 |
4 8 12 16 19 31
|
finds |
⊢ ( 𝐵 ∈ ω → ( 𝐴 ∈ On → ( 𝐴 +o 𝐵 ) = ( 𝐴 +no 𝐵 ) ) ) |
| 33 |
32
|
impcom |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 +o 𝐵 ) = ( 𝐴 +no 𝐵 ) ) |