Metamath Proof Explorer


Theorem naddonnn

Description: Natural addition with a natural number on the right results in a value equal to that of ordinal addition. (Contributed by RP, 1-Jan-2025)

Ref Expression
Assertion naddonnn A On B ω A + 𝑜 B = A + B

Proof

Step Hyp Ref Expression
1 oveq2 x = A + 𝑜 x = A + 𝑜
2 oveq2 x = A + x = A +
3 1 2 eqeq12d x = A + 𝑜 x = A + x A + 𝑜 = A +
4 3 imbi2d x = A On A + 𝑜 x = A + x A On A + 𝑜 = A +
5 oveq2 x = y A + 𝑜 x = A + 𝑜 y
6 oveq2 x = y A + x = A + y
7 5 6 eqeq12d x = y A + 𝑜 x = A + x A + 𝑜 y = A + y
8 7 imbi2d x = y A On A + 𝑜 x = A + x A On A + 𝑜 y = A + y
9 oveq2 x = suc y A + 𝑜 x = A + 𝑜 suc y
10 oveq2 x = suc y A + x = A + suc y
11 9 10 eqeq12d x = suc y A + 𝑜 x = A + x A + 𝑜 suc y = A + suc y
12 11 imbi2d x = suc y A On A + 𝑜 x = A + x A On A + 𝑜 suc y = A + suc y
13 oveq2 x = B A + 𝑜 x = A + 𝑜 B
14 oveq2 x = B A + x = A + B
15 13 14 eqeq12d x = B A + 𝑜 x = A + x A + 𝑜 B = A + B
16 15 imbi2d x = B A On A + 𝑜 x = A + x A On A + 𝑜 B = A + B
17 oa0 A On A + 𝑜 = A
18 naddrid A On A + = A
19 17 18 eqtr4d A On A + 𝑜 = A +
20 nnon y ω y On
21 suceq A + 𝑜 y = A + y suc A + 𝑜 y = suc A + y
22 21 adantl A On y On A + 𝑜 y = A + y suc A + 𝑜 y = suc A + y
23 oasuc A On y On A + 𝑜 suc y = suc A + 𝑜 y
24 23 adantr A On y On A + 𝑜 y = A + y A + 𝑜 suc y = suc A + 𝑜 y
25 naddsuc2 A On y On A + suc y = suc A + y
26 25 adantr A On y On A + 𝑜 y = A + y A + suc y = suc A + y
27 22 24 26 3eqtr4d A On y On A + 𝑜 y = A + y A + 𝑜 suc y = A + suc y
28 27 ex A On y On A + 𝑜 y = A + y A + 𝑜 suc y = A + suc y
29 28 expcom y On A On A + 𝑜 y = A + y A + 𝑜 suc y = A + suc y
30 20 29 syl y ω A On A + 𝑜 y = A + y A + 𝑜 suc y = A + suc y
31 30 a2d y ω A On A + 𝑜 y = A + y A On A + 𝑜 suc y = A + suc y
32 4 8 12 16 19 31 finds B ω A On A + 𝑜 B = A + B
33 32 impcom A On B ω A + 𝑜 B = A + B