| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|
| 2 |
|
oveq2 |
|
| 3 |
1 2
|
eqeq12d |
|
| 4 |
3
|
imbi2d |
|
| 5 |
|
oveq2 |
|
| 6 |
|
oveq2 |
|
| 7 |
5 6
|
eqeq12d |
|
| 8 |
7
|
imbi2d |
|
| 9 |
|
oveq2 |
|
| 10 |
|
oveq2 |
|
| 11 |
9 10
|
eqeq12d |
|
| 12 |
11
|
imbi2d |
|
| 13 |
|
oveq2 |
|
| 14 |
|
oveq2 |
|
| 15 |
13 14
|
eqeq12d |
|
| 16 |
15
|
imbi2d |
|
| 17 |
|
oa0 |
|
| 18 |
|
naddrid |
|
| 19 |
17 18
|
eqtr4d |
|
| 20 |
|
nnon |
|
| 21 |
|
suceq |
|
| 22 |
21
|
adantl |
|
| 23 |
|
oasuc |
|
| 24 |
23
|
adantr |
|
| 25 |
|
naddsuc2 |
|
| 26 |
25
|
adantr |
|
| 27 |
22 24 26
|
3eqtr4d |
|
| 28 |
27
|
ex |
|
| 29 |
28
|
expcom |
|
| 30 |
20 29
|
syl |
|
| 31 |
30
|
a2d |
|
| 32 |
4 8 12 16 19 31
|
finds |
|
| 33 |
32
|
impcom |
|