Metamath Proof Explorer


Theorem naddsuc2

Description: Natural addition with successor. (Contributed by RP, 1-Jan-2025)

Ref Expression
Assertion naddsuc2 A On B On A + suc B = suc A + B

Proof

Step Hyp Ref Expression
1 oveq1 a = c a + suc b = c + suc b
2 oveq1 a = c a + b = c + b
3 suceq a + b = c + b suc a + b = suc c + b
4 2 3 syl a = c suc a + b = suc c + b
5 1 4 eqeq12d a = c a + suc b = suc a + b c + suc b = suc c + b
6 suceq b = d suc b = suc d
7 6 oveq2d b = d c + suc b = c + suc d
8 oveq2 b = d c + b = c + d
9 suceq c + b = c + d suc c + b = suc c + d
10 8 9 syl b = d suc c + b = suc c + d
11 7 10 eqeq12d b = d c + suc b = suc c + b c + suc d = suc c + d
12 oveq1 a = c a + suc d = c + suc d
13 oveq1 a = c a + d = c + d
14 suceq a + d = c + d suc a + d = suc c + d
15 13 14 syl a = c suc a + d = suc c + d
16 12 15 eqeq12d a = c a + suc d = suc a + d c + suc d = suc c + d
17 oveq1 a = A a + suc b = A + suc b
18 oveq1 a = A a + b = A + b
19 suceq a + b = A + b suc a + b = suc A + b
20 18 19 syl a = A suc a + b = suc A + b
21 17 20 eqeq12d a = A a + suc b = suc a + b A + suc b = suc A + b
22 suceq b = B suc b = suc B
23 22 oveq2d b = B A + suc b = A + suc B
24 oveq2 b = B A + b = A + B
25 suceq A + b = A + B suc A + b = suc A + B
26 24 25 syl b = B suc A + b = suc A + B
27 23 26 eqeq12d b = B A + suc b = suc A + b A + suc B = suc A + B
28 simp2 c a d b c + suc d = suc c + d c a c + suc b = suc c + b d b a + suc d = suc a + d c a c + suc b = suc c + b
29 28 a1i a On b On c a d b c + suc d = suc c + d c a c + suc b = suc c + b d b a + suc d = suc a + d c a c + suc b = suc c + b
30 df-suc suc b = b b
31 30 a1i a On b On c a c + suc b = suc c + b x On suc b = b b
32 31 raleqdv a On b On c a c + suc b = suc c + b x On d suc b a + d x d b b a + d x
33 vex b V
34 33 a1i a On b On c a c + suc b = suc c + b x On b V
35 oveq2 d = b a + d = a + b
36 35 eleq1d d = b a + d x a + b x
37 36 ralunsn b V d b b a + d x d b a + d x a + b x
38 34 37 syl a On b On c a c + suc b = suc c + b x On d b b a + d x d b a + d x a + b x
39 38 biancomd a On b On c a c + suc b = suc c + b x On d b b a + d x a + b x d b a + d x
40 32 39 bitrd a On b On c a c + suc b = suc c + b x On d suc b a + d x a + b x d b a + d x
41 nfv c a On b On
42 nfra1 c c a c + suc b = suc c + b
43 41 42 nfan c a On b On c a c + suc b = suc c + b
44 nfv c x On
45 43 44 nfan c a On b On c a c + suc b = suc c + b x On
46 simplr a On b On c a c + suc b = suc c + b x On c a c + suc b = suc c + b
47 46 r19.21bi a On b On c a c + suc b = suc c + b x On c a c + suc b = suc c + b
48 47 eleq1d a On b On c a c + suc b = suc c + b x On c a c + suc b x suc c + b x
49 45 48 ralbida a On b On c a c + suc b = suc c + b x On c a c + suc b x c a suc c + b x
50 40 49 anbi12d a On b On c a c + suc b = suc c + b x On d suc b a + d x c a c + suc b x a + b x d b a + d x c a suc c + b x
51 anass a + b x d b a + d x c a suc c + b x a + b x d b a + d x c a suc c + b x
52 simpll3 a On b On x On a + b x d b x On
53 simpr a On b On x On a + b x d b d b
54 simpll2 a On b On x On a + b x d b b On
55 onelon b On d b d On
56 54 53 55 syl2anc a On b On x On a + b x d b d On
57 simpll1 a On b On x On a + b x d b a On
58 naddel2 d On b On a On d b a + d a + b
59 56 54 57 58 syl3anc a On b On x On a + b x d b d b a + d a + b
60 53 59 mpbid a On b On x On a + b x d b a + d a + b
61 simplr a On b On x On a + b x d b a + b x
62 60 61 jca a On b On x On a + b x d b a + d a + b a + b x
63 ontr1 x On a + d a + b a + b x a + d x
64 52 62 63 sylc a On b On x On a + b x d b a + d x
65 64 ralrimiva a On b On x On a + b x d b a + d x
66 simpll1 a On b On x On a + b x c a a On
67 simpr a On b On x On a + b x c a c a
68 onelon a On c a c On
69 66 67 68 syl2anc a On b On x On a + b x c a c On
70 simpll2 a On b On x On a + b x c a b On
71 69 66 70 3jca a On b On x On a + b x c a c On a On b On
72 naddelim c On a On b On c a c + b a + b
73 71 67 72 sylc a On b On x On a + b x c a c + b a + b
74 simplr a On b On x On a + b x c a a + b x
75 elunii c + b a + b a + b x c + b x
76 73 74 75 syl2anc a On b On x On a + b x c a c + b x
77 simpll3 a On b On x On a + b x c a x On
78 eloni x On Ord x
79 77 78 syl a On b On x On a + b x c a Ord x
80 ordsucuniel Ord x c + b x suc c + b x
81 79 80 syl a On b On x On a + b x c a c + b x suc c + b x
82 76 81 mpbid a On b On x On a + b x c a suc c + b x
83 82 ralrimiva a On b On x On a + b x c a suc c + b x
84 65 83 jca a On b On x On a + b x d b a + d x c a suc c + b x
85 84 ex a On b On x On a + b x d b a + d x c a suc c + b x
86 85 ad4ant124 a On b On c a c + suc b = suc c + b x On a + b x d b a + d x c a suc c + b x
87 86 pm4.71d a On b On c a c + suc b = suc c + b x On a + b x a + b x d b a + d x c a suc c + b x
88 51 87 bitr4id a On b On c a c + suc b = suc c + b x On a + b x d b a + d x c a suc c + b x a + b x
89 50 88 bitrd a On b On c a c + suc b = suc c + b x On d suc b a + d x c a c + suc b x a + b x
90 89 rabbidva a On b On c a c + suc b = suc c + b x On | d suc b a + d x c a c + suc b x = x On | a + b x
91 90 inteqd a On b On c a c + suc b = suc c + b x On | d suc b a + d x c a c + suc b x = x On | a + b x
92 onsuc b On suc b On
93 naddov2 a On suc b On a + suc b = x On | d suc b a + d x c a c + suc b x
94 92 93 sylan2 a On b On a + suc b = x On | d suc b a + d x c a c + suc b x
95 94 adantr a On b On c a c + suc b = suc c + b a + suc b = x On | d suc b a + d x c a c + suc b x
96 naddcl a On b On a + b On
97 onsucmin a + b On suc a + b = x On | a + b x
98 96 97 syl a On b On suc a + b = x On | a + b x
99 98 adantr a On b On c a c + suc b = suc c + b suc a + b = x On | a + b x
100 91 95 99 3eqtr4d a On b On c a c + suc b = suc c + b a + suc b = suc a + b
101 100 ex a On b On c a c + suc b = suc c + b a + suc b = suc a + b
102 29 101 syld a On b On c a d b c + suc d = suc c + d c a c + suc b = suc c + b d b a + suc d = suc a + d a + suc b = suc a + b
103 5 11 16 21 27 102 on2ind A On B On A + suc B = suc A + B