Metamath Proof Explorer


Theorem on2ind

Description: Double induction over ordinal numbers. (Contributed by Scott Fenton, 26-Aug-2024)

Ref Expression
Hypotheses on2ind.1 a = c φ ψ
on2ind.2 b = d ψ χ
on2ind.3 a = c θ χ
on2ind.4 a = X φ τ
on2ind.5 b = Y τ η
on2ind.i a On b On c a d b χ c a ψ d b θ φ
Assertion on2ind X On Y On η

Proof

Step Hyp Ref Expression
1 on2ind.1 a = c φ ψ
2 on2ind.2 b = d ψ χ
3 on2ind.3 a = c θ χ
4 on2ind.4 a = X φ τ
5 on2ind.5 b = Y τ η
6 on2ind.i a On b On c a d b χ c a ψ d b θ φ
7 eqid x y | x On × On y On × On 1 st x E 1 st y 1 st x = 1 st y 2 nd x E 2 nd y 2 nd x = 2 nd y x y = x y | x On × On y On × On 1 st x E 1 st y 1 st x = 1 st y 2 nd x E 2 nd y 2 nd x = 2 nd y x y
8 onfr E Fr On
9 epweon E We On
10 weso E We On E Or On
11 sopo E Or On E Po On
12 9 10 11 mp2b E Po On
13 epse E Se On
14 predon a On Pred E On a = a
15 14 adantr a On b On Pred E On a = a
16 predon b On Pred E On b = b
17 16 adantl a On b On Pred E On b = b
18 17 raleqdv a On b On d Pred E On b χ d b χ
19 15 18 raleqbidv a On b On c Pred E On a d Pred E On b χ c a d b χ
20 15 raleqdv a On b On c Pred E On a ψ c a ψ
21 17 raleqdv a On b On d Pred E On b θ d b θ
22 19 20 21 3anbi123d a On b On c Pred E On a d Pred E On b χ c Pred E On a ψ d Pred E On b θ c a d b χ c a ψ d b θ
23 22 6 sylbid a On b On c Pred E On a d Pred E On b χ c Pred E On a ψ d Pred E On b θ φ
24 7 8 12 13 8 12 13 1 2 3 4 5 23 xpord2ind X On Y On η