Metamath Proof Explorer


Theorem onsucmin

Description: The successor of an ordinal number is the smallest larger ordinal number. (Contributed by NM, 28-Nov-2003)

Ref Expression
Assertion onsucmin AOnsucA=xOn|Ax

Proof

Step Hyp Ref Expression
1 eloni xOnOrdx
2 ordelsuc AOnOrdxAxsucAx
3 1 2 sylan2 AOnxOnAxsucAx
4 3 rabbidva AOnxOn|Ax=xOn|sucAx
5 4 inteqd AOnxOn|Ax=xOn|sucAx
6 onsucb AOnsucAOn
7 intmin sucAOnxOn|sucAx=sucA
8 6 7 sylbi AOnxOn|sucAx=sucA
9 5 8 eqtr2d AOnsucA=xOn|Ax