| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eloni |
⊢ ( 𝑥 ∈ On → Ord 𝑥 ) |
| 2 |
|
ordelsuc |
⊢ ( ( 𝐴 ∈ On ∧ Ord 𝑥 ) → ( 𝐴 ∈ 𝑥 ↔ suc 𝐴 ⊆ 𝑥 ) ) |
| 3 |
1 2
|
sylan2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐴 ∈ 𝑥 ↔ suc 𝐴 ⊆ 𝑥 ) ) |
| 4 |
3
|
rabbidva |
⊢ ( 𝐴 ∈ On → { 𝑥 ∈ On ∣ 𝐴 ∈ 𝑥 } = { 𝑥 ∈ On ∣ suc 𝐴 ⊆ 𝑥 } ) |
| 5 |
4
|
inteqd |
⊢ ( 𝐴 ∈ On → ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ 𝑥 } = ∩ { 𝑥 ∈ On ∣ suc 𝐴 ⊆ 𝑥 } ) |
| 6 |
|
onsucb |
⊢ ( 𝐴 ∈ On ↔ suc 𝐴 ∈ On ) |
| 7 |
|
intmin |
⊢ ( suc 𝐴 ∈ On → ∩ { 𝑥 ∈ On ∣ suc 𝐴 ⊆ 𝑥 } = suc 𝐴 ) |
| 8 |
6 7
|
sylbi |
⊢ ( 𝐴 ∈ On → ∩ { 𝑥 ∈ On ∣ suc 𝐴 ⊆ 𝑥 } = suc 𝐴 ) |
| 9 |
5 8
|
eqtr2d |
⊢ ( 𝐴 ∈ On → suc 𝐴 = ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ 𝑥 } ) |