Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
|
oveq2 |
|
3 |
1 2
|
eqeq12d |
|
4 |
3
|
imbi2d |
|
5 |
|
oveq2 |
|
6 |
|
oveq2 |
|
7 |
5 6
|
eqeq12d |
|
8 |
7
|
imbi2d |
|
9 |
|
oveq2 |
|
10 |
|
oveq2 |
|
11 |
9 10
|
eqeq12d |
|
12 |
11
|
imbi2d |
|
13 |
|
oveq2 |
|
14 |
|
oveq2 |
|
15 |
13 14
|
eqeq12d |
|
16 |
15
|
imbi2d |
|
17 |
|
naddrid |
|
18 |
|
oa0 |
|
19 |
17 18
|
eqtr4d |
|
20 |
|
suceq |
|
21 |
20
|
3ad2ant3 |
|
22 |
|
nnon |
|
23 |
|
naddsuc2 |
|
24 |
22 23
|
sylan2 |
|
25 |
24
|
ancoms |
|
26 |
25
|
3adant3 |
|
27 |
|
onasuc |
|
28 |
27
|
ancoms |
|
29 |
28
|
3adant3 |
|
30 |
21 26 29
|
3eqtr4d |
|
31 |
30
|
3exp |
|
32 |
31
|
a2d |
|
33 |
4 8 12 16 19 32
|
finds |
|
34 |
33
|
impcom |
|