| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
⊢ ( 𝑦 = ∅ → ( 𝐴 +no 𝑦 ) = ( 𝐴 +no ∅ ) ) |
| 2 |
|
oveq2 |
⊢ ( 𝑦 = ∅ → ( 𝐴 +o 𝑦 ) = ( 𝐴 +o ∅ ) ) |
| 3 |
1 2
|
eqeq12d |
⊢ ( 𝑦 = ∅ → ( ( 𝐴 +no 𝑦 ) = ( 𝐴 +o 𝑦 ) ↔ ( 𝐴 +no ∅ ) = ( 𝐴 +o ∅ ) ) ) |
| 4 |
3
|
imbi2d |
⊢ ( 𝑦 = ∅ → ( ( 𝐴 ∈ On → ( 𝐴 +no 𝑦 ) = ( 𝐴 +o 𝑦 ) ) ↔ ( 𝐴 ∈ On → ( 𝐴 +no ∅ ) = ( 𝐴 +o ∅ ) ) ) ) |
| 5 |
|
oveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝐴 +no 𝑦 ) = ( 𝐴 +no 𝑥 ) ) |
| 6 |
|
oveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝐴 +o 𝑦 ) = ( 𝐴 +o 𝑥 ) ) |
| 7 |
5 6
|
eqeq12d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝐴 +no 𝑦 ) = ( 𝐴 +o 𝑦 ) ↔ ( 𝐴 +no 𝑥 ) = ( 𝐴 +o 𝑥 ) ) ) |
| 8 |
7
|
imbi2d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝐴 ∈ On → ( 𝐴 +no 𝑦 ) = ( 𝐴 +o 𝑦 ) ) ↔ ( 𝐴 ∈ On → ( 𝐴 +no 𝑥 ) = ( 𝐴 +o 𝑥 ) ) ) ) |
| 9 |
|
oveq2 |
⊢ ( 𝑦 = suc 𝑥 → ( 𝐴 +no 𝑦 ) = ( 𝐴 +no suc 𝑥 ) ) |
| 10 |
|
oveq2 |
⊢ ( 𝑦 = suc 𝑥 → ( 𝐴 +o 𝑦 ) = ( 𝐴 +o suc 𝑥 ) ) |
| 11 |
9 10
|
eqeq12d |
⊢ ( 𝑦 = suc 𝑥 → ( ( 𝐴 +no 𝑦 ) = ( 𝐴 +o 𝑦 ) ↔ ( 𝐴 +no suc 𝑥 ) = ( 𝐴 +o suc 𝑥 ) ) ) |
| 12 |
11
|
imbi2d |
⊢ ( 𝑦 = suc 𝑥 → ( ( 𝐴 ∈ On → ( 𝐴 +no 𝑦 ) = ( 𝐴 +o 𝑦 ) ) ↔ ( 𝐴 ∈ On → ( 𝐴 +no suc 𝑥 ) = ( 𝐴 +o suc 𝑥 ) ) ) ) |
| 13 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 +no 𝑦 ) = ( 𝐴 +no 𝐵 ) ) |
| 14 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 +o 𝑦 ) = ( 𝐴 +o 𝐵 ) ) |
| 15 |
13 14
|
eqeq12d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 +no 𝑦 ) = ( 𝐴 +o 𝑦 ) ↔ ( 𝐴 +no 𝐵 ) = ( 𝐴 +o 𝐵 ) ) ) |
| 16 |
15
|
imbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ∈ On → ( 𝐴 +no 𝑦 ) = ( 𝐴 +o 𝑦 ) ) ↔ ( 𝐴 ∈ On → ( 𝐴 +no 𝐵 ) = ( 𝐴 +o 𝐵 ) ) ) ) |
| 17 |
|
naddrid |
⊢ ( 𝐴 ∈ On → ( 𝐴 +no ∅ ) = 𝐴 ) |
| 18 |
|
oa0 |
⊢ ( 𝐴 ∈ On → ( 𝐴 +o ∅ ) = 𝐴 ) |
| 19 |
17 18
|
eqtr4d |
⊢ ( 𝐴 ∈ On → ( 𝐴 +no ∅ ) = ( 𝐴 +o ∅ ) ) |
| 20 |
|
suceq |
⊢ ( ( 𝐴 +no 𝑥 ) = ( 𝐴 +o 𝑥 ) → suc ( 𝐴 +no 𝑥 ) = suc ( 𝐴 +o 𝑥 ) ) |
| 21 |
20
|
3ad2ant3 |
⊢ ( ( 𝑥 ∈ ω ∧ 𝐴 ∈ On ∧ ( 𝐴 +no 𝑥 ) = ( 𝐴 +o 𝑥 ) ) → suc ( 𝐴 +no 𝑥 ) = suc ( 𝐴 +o 𝑥 ) ) |
| 22 |
|
nnon |
⊢ ( 𝑥 ∈ ω → 𝑥 ∈ On ) |
| 23 |
|
naddsuc2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐴 +no suc 𝑥 ) = suc ( 𝐴 +no 𝑥 ) ) |
| 24 |
22 23
|
sylan2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ ω ) → ( 𝐴 +no suc 𝑥 ) = suc ( 𝐴 +no 𝑥 ) ) |
| 25 |
24
|
ancoms |
⊢ ( ( 𝑥 ∈ ω ∧ 𝐴 ∈ On ) → ( 𝐴 +no suc 𝑥 ) = suc ( 𝐴 +no 𝑥 ) ) |
| 26 |
25
|
3adant3 |
⊢ ( ( 𝑥 ∈ ω ∧ 𝐴 ∈ On ∧ ( 𝐴 +no 𝑥 ) = ( 𝐴 +o 𝑥 ) ) → ( 𝐴 +no suc 𝑥 ) = suc ( 𝐴 +no 𝑥 ) ) |
| 27 |
|
onasuc |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ ω ) → ( 𝐴 +o suc 𝑥 ) = suc ( 𝐴 +o 𝑥 ) ) |
| 28 |
27
|
ancoms |
⊢ ( ( 𝑥 ∈ ω ∧ 𝐴 ∈ On ) → ( 𝐴 +o suc 𝑥 ) = suc ( 𝐴 +o 𝑥 ) ) |
| 29 |
28
|
3adant3 |
⊢ ( ( 𝑥 ∈ ω ∧ 𝐴 ∈ On ∧ ( 𝐴 +no 𝑥 ) = ( 𝐴 +o 𝑥 ) ) → ( 𝐴 +o suc 𝑥 ) = suc ( 𝐴 +o 𝑥 ) ) |
| 30 |
21 26 29
|
3eqtr4d |
⊢ ( ( 𝑥 ∈ ω ∧ 𝐴 ∈ On ∧ ( 𝐴 +no 𝑥 ) = ( 𝐴 +o 𝑥 ) ) → ( 𝐴 +no suc 𝑥 ) = ( 𝐴 +o suc 𝑥 ) ) |
| 31 |
30
|
3exp |
⊢ ( 𝑥 ∈ ω → ( 𝐴 ∈ On → ( ( 𝐴 +no 𝑥 ) = ( 𝐴 +o 𝑥 ) → ( 𝐴 +no suc 𝑥 ) = ( 𝐴 +o suc 𝑥 ) ) ) ) |
| 32 |
31
|
a2d |
⊢ ( 𝑥 ∈ ω → ( ( 𝐴 ∈ On → ( 𝐴 +no 𝑥 ) = ( 𝐴 +o 𝑥 ) ) → ( 𝐴 ∈ On → ( 𝐴 +no suc 𝑥 ) = ( 𝐴 +o suc 𝑥 ) ) ) ) |
| 33 |
4 8 12 16 19 32
|
finds |
⊢ ( 𝐵 ∈ ω → ( 𝐴 ∈ On → ( 𝐴 +no 𝐵 ) = ( 𝐴 +o 𝐵 ) ) ) |
| 34 |
33
|
impcom |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 +no 𝐵 ) = ( 𝐴 +o 𝐵 ) ) |