Description: The naturals are closed under natural addition. (Contributed by Scott Fenton, 20-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omnaddcl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 +no 𝐵 ) ∈ ω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon | ⊢ ( 𝐴 ∈ ω → 𝐴 ∈ On ) | |
| 2 | naddoa | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 +no 𝐵 ) = ( 𝐴 +o 𝐵 ) ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 +no 𝐵 ) = ( 𝐴 +o 𝐵 ) ) |
| 4 | nnacl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 +o 𝐵 ) ∈ ω ) | |
| 5 | 3 4 | eqeltrd | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 +no 𝐵 ) ∈ ω ) |