Metamath Proof Explorer


Theorem omnaddcl

Description: The naturals are closed under natural addition. (Contributed by Scott Fenton, 20-Aug-2025)

Ref Expression
Assertion omnaddcl ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 +no 𝐵 ) ∈ ω )

Proof

Step Hyp Ref Expression
1 nnon ( 𝐴 ∈ ω → 𝐴 ∈ On )
2 naddoa ( ( 𝐴 ∈ On ∧ 𝐵 ∈ ω ) → ( 𝐴 +no 𝐵 ) = ( 𝐴 +o 𝐵 ) )
3 1 2 sylan ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 +no 𝐵 ) = ( 𝐴 +o 𝐵 ) )
4 nnacl ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 +o 𝐵 ) ∈ ω )
5 3 4 eqeltrd ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 +no 𝐵 ) ∈ ω )