Description: The naturals are closed under natural addition. (Contributed by Scott Fenton, 20-Aug-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | omnaddcl | |- ( ( A e. _om /\ B e. _om ) -> ( A +no B ) e. _om ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon | |- ( A e. _om -> A e. On ) |
|
2 | naddoa | |- ( ( A e. On /\ B e. _om ) -> ( A +no B ) = ( A +o B ) ) |
|
3 | 1 2 | sylan | |- ( ( A e. _om /\ B e. _om ) -> ( A +no B ) = ( A +o B ) ) |
4 | nnacl | |- ( ( A e. _om /\ B e. _om ) -> ( A +o B ) e. _om ) |
|
5 | 3 4 | eqeltrd | |- ( ( A e. _om /\ B e. _om ) -> ( A +no B ) e. _om ) |