Metamath Proof Explorer


Theorem omnaddcl

Description: The naturals are closed under natural addition. (Contributed by Scott Fenton, 20-Aug-2025)

Ref Expression
Assertion omnaddcl
|- ( ( A e. _om /\ B e. _om ) -> ( A +no B ) e. _om )

Proof

Step Hyp Ref Expression
1 nnon
 |-  ( A e. _om -> A e. On )
2 naddoa
 |-  ( ( A e. On /\ B e. _om ) -> ( A +no B ) = ( A +o B ) )
3 1 2 sylan
 |-  ( ( A e. _om /\ B e. _om ) -> ( A +no B ) = ( A +o B ) )
4 nnacl
 |-  ( ( A e. _om /\ B e. _om ) -> ( A +o B ) e. _om )
5 3 4 eqeltrd
 |-  ( ( A e. _om /\ B e. _om ) -> ( A +no B ) e. _om )