Description: The naturals are closed under natural addition. (Contributed by Scott Fenton, 20-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omnaddcl | |- ( ( A e. _om /\ B e. _om ) -> ( A +no B ) e. _om ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon | |- ( A e. _om -> A e. On ) |
|
| 2 | naddoa | |- ( ( A e. On /\ B e. _om ) -> ( A +no B ) = ( A +o B ) ) |
|
| 3 | 1 2 | sylan | |- ( ( A e. _om /\ B e. _om ) -> ( A +no B ) = ( A +o B ) ) |
| 4 | nnacl | |- ( ( A e. _om /\ B e. _om ) -> ( A +o B ) e. _om ) |
|
| 5 | 3 4 | eqeltrd | |- ( ( A e. _om /\ B e. _om ) -> ( A +no B ) e. _om ) |