Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( y = (/) -> ( A +no y ) = ( A +no (/) ) ) |
2 |
|
oveq2 |
|- ( y = (/) -> ( A +o y ) = ( A +o (/) ) ) |
3 |
1 2
|
eqeq12d |
|- ( y = (/) -> ( ( A +no y ) = ( A +o y ) <-> ( A +no (/) ) = ( A +o (/) ) ) ) |
4 |
3
|
imbi2d |
|- ( y = (/) -> ( ( A e. On -> ( A +no y ) = ( A +o y ) ) <-> ( A e. On -> ( A +no (/) ) = ( A +o (/) ) ) ) ) |
5 |
|
oveq2 |
|- ( y = x -> ( A +no y ) = ( A +no x ) ) |
6 |
|
oveq2 |
|- ( y = x -> ( A +o y ) = ( A +o x ) ) |
7 |
5 6
|
eqeq12d |
|- ( y = x -> ( ( A +no y ) = ( A +o y ) <-> ( A +no x ) = ( A +o x ) ) ) |
8 |
7
|
imbi2d |
|- ( y = x -> ( ( A e. On -> ( A +no y ) = ( A +o y ) ) <-> ( A e. On -> ( A +no x ) = ( A +o x ) ) ) ) |
9 |
|
oveq2 |
|- ( y = suc x -> ( A +no y ) = ( A +no suc x ) ) |
10 |
|
oveq2 |
|- ( y = suc x -> ( A +o y ) = ( A +o suc x ) ) |
11 |
9 10
|
eqeq12d |
|- ( y = suc x -> ( ( A +no y ) = ( A +o y ) <-> ( A +no suc x ) = ( A +o suc x ) ) ) |
12 |
11
|
imbi2d |
|- ( y = suc x -> ( ( A e. On -> ( A +no y ) = ( A +o y ) ) <-> ( A e. On -> ( A +no suc x ) = ( A +o suc x ) ) ) ) |
13 |
|
oveq2 |
|- ( y = B -> ( A +no y ) = ( A +no B ) ) |
14 |
|
oveq2 |
|- ( y = B -> ( A +o y ) = ( A +o B ) ) |
15 |
13 14
|
eqeq12d |
|- ( y = B -> ( ( A +no y ) = ( A +o y ) <-> ( A +no B ) = ( A +o B ) ) ) |
16 |
15
|
imbi2d |
|- ( y = B -> ( ( A e. On -> ( A +no y ) = ( A +o y ) ) <-> ( A e. On -> ( A +no B ) = ( A +o B ) ) ) ) |
17 |
|
naddrid |
|- ( A e. On -> ( A +no (/) ) = A ) |
18 |
|
oa0 |
|- ( A e. On -> ( A +o (/) ) = A ) |
19 |
17 18
|
eqtr4d |
|- ( A e. On -> ( A +no (/) ) = ( A +o (/) ) ) |
20 |
|
suceq |
|- ( ( A +no x ) = ( A +o x ) -> suc ( A +no x ) = suc ( A +o x ) ) |
21 |
20
|
3ad2ant3 |
|- ( ( x e. _om /\ A e. On /\ ( A +no x ) = ( A +o x ) ) -> suc ( A +no x ) = suc ( A +o x ) ) |
22 |
|
nnon |
|- ( x e. _om -> x e. On ) |
23 |
|
naddsuc2 |
|- ( ( A e. On /\ x e. On ) -> ( A +no suc x ) = suc ( A +no x ) ) |
24 |
22 23
|
sylan2 |
|- ( ( A e. On /\ x e. _om ) -> ( A +no suc x ) = suc ( A +no x ) ) |
25 |
24
|
ancoms |
|- ( ( x e. _om /\ A e. On ) -> ( A +no suc x ) = suc ( A +no x ) ) |
26 |
25
|
3adant3 |
|- ( ( x e. _om /\ A e. On /\ ( A +no x ) = ( A +o x ) ) -> ( A +no suc x ) = suc ( A +no x ) ) |
27 |
|
onasuc |
|- ( ( A e. On /\ x e. _om ) -> ( A +o suc x ) = suc ( A +o x ) ) |
28 |
27
|
ancoms |
|- ( ( x e. _om /\ A e. On ) -> ( A +o suc x ) = suc ( A +o x ) ) |
29 |
28
|
3adant3 |
|- ( ( x e. _om /\ A e. On /\ ( A +no x ) = ( A +o x ) ) -> ( A +o suc x ) = suc ( A +o x ) ) |
30 |
21 26 29
|
3eqtr4d |
|- ( ( x e. _om /\ A e. On /\ ( A +no x ) = ( A +o x ) ) -> ( A +no suc x ) = ( A +o suc x ) ) |
31 |
30
|
3exp |
|- ( x e. _om -> ( A e. On -> ( ( A +no x ) = ( A +o x ) -> ( A +no suc x ) = ( A +o suc x ) ) ) ) |
32 |
31
|
a2d |
|- ( x e. _om -> ( ( A e. On -> ( A +no x ) = ( A +o x ) ) -> ( A e. On -> ( A +no suc x ) = ( A +o suc x ) ) ) ) |
33 |
4 8 12 16 19 32
|
finds |
|- ( B e. _om -> ( A e. On -> ( A +no B ) = ( A +o B ) ) ) |
34 |
33
|
impcom |
|- ( ( A e. On /\ B e. _om ) -> ( A +no B ) = ( A +o B ) ) |