| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|- ( y = (/) -> ( A +no y ) = ( A +no (/) ) ) |
| 2 |
|
oveq2 |
|- ( y = (/) -> ( A +o y ) = ( A +o (/) ) ) |
| 3 |
1 2
|
eqeq12d |
|- ( y = (/) -> ( ( A +no y ) = ( A +o y ) <-> ( A +no (/) ) = ( A +o (/) ) ) ) |
| 4 |
3
|
imbi2d |
|- ( y = (/) -> ( ( A e. On -> ( A +no y ) = ( A +o y ) ) <-> ( A e. On -> ( A +no (/) ) = ( A +o (/) ) ) ) ) |
| 5 |
|
oveq2 |
|- ( y = x -> ( A +no y ) = ( A +no x ) ) |
| 6 |
|
oveq2 |
|- ( y = x -> ( A +o y ) = ( A +o x ) ) |
| 7 |
5 6
|
eqeq12d |
|- ( y = x -> ( ( A +no y ) = ( A +o y ) <-> ( A +no x ) = ( A +o x ) ) ) |
| 8 |
7
|
imbi2d |
|- ( y = x -> ( ( A e. On -> ( A +no y ) = ( A +o y ) ) <-> ( A e. On -> ( A +no x ) = ( A +o x ) ) ) ) |
| 9 |
|
oveq2 |
|- ( y = suc x -> ( A +no y ) = ( A +no suc x ) ) |
| 10 |
|
oveq2 |
|- ( y = suc x -> ( A +o y ) = ( A +o suc x ) ) |
| 11 |
9 10
|
eqeq12d |
|- ( y = suc x -> ( ( A +no y ) = ( A +o y ) <-> ( A +no suc x ) = ( A +o suc x ) ) ) |
| 12 |
11
|
imbi2d |
|- ( y = suc x -> ( ( A e. On -> ( A +no y ) = ( A +o y ) ) <-> ( A e. On -> ( A +no suc x ) = ( A +o suc x ) ) ) ) |
| 13 |
|
oveq2 |
|- ( y = B -> ( A +no y ) = ( A +no B ) ) |
| 14 |
|
oveq2 |
|- ( y = B -> ( A +o y ) = ( A +o B ) ) |
| 15 |
13 14
|
eqeq12d |
|- ( y = B -> ( ( A +no y ) = ( A +o y ) <-> ( A +no B ) = ( A +o B ) ) ) |
| 16 |
15
|
imbi2d |
|- ( y = B -> ( ( A e. On -> ( A +no y ) = ( A +o y ) ) <-> ( A e. On -> ( A +no B ) = ( A +o B ) ) ) ) |
| 17 |
|
naddrid |
|- ( A e. On -> ( A +no (/) ) = A ) |
| 18 |
|
oa0 |
|- ( A e. On -> ( A +o (/) ) = A ) |
| 19 |
17 18
|
eqtr4d |
|- ( A e. On -> ( A +no (/) ) = ( A +o (/) ) ) |
| 20 |
|
suceq |
|- ( ( A +no x ) = ( A +o x ) -> suc ( A +no x ) = suc ( A +o x ) ) |
| 21 |
20
|
3ad2ant3 |
|- ( ( x e. _om /\ A e. On /\ ( A +no x ) = ( A +o x ) ) -> suc ( A +no x ) = suc ( A +o x ) ) |
| 22 |
|
nnon |
|- ( x e. _om -> x e. On ) |
| 23 |
|
naddsuc2 |
|- ( ( A e. On /\ x e. On ) -> ( A +no suc x ) = suc ( A +no x ) ) |
| 24 |
22 23
|
sylan2 |
|- ( ( A e. On /\ x e. _om ) -> ( A +no suc x ) = suc ( A +no x ) ) |
| 25 |
24
|
ancoms |
|- ( ( x e. _om /\ A e. On ) -> ( A +no suc x ) = suc ( A +no x ) ) |
| 26 |
25
|
3adant3 |
|- ( ( x e. _om /\ A e. On /\ ( A +no x ) = ( A +o x ) ) -> ( A +no suc x ) = suc ( A +no x ) ) |
| 27 |
|
onasuc |
|- ( ( A e. On /\ x e. _om ) -> ( A +o suc x ) = suc ( A +o x ) ) |
| 28 |
27
|
ancoms |
|- ( ( x e. _om /\ A e. On ) -> ( A +o suc x ) = suc ( A +o x ) ) |
| 29 |
28
|
3adant3 |
|- ( ( x e. _om /\ A e. On /\ ( A +no x ) = ( A +o x ) ) -> ( A +o suc x ) = suc ( A +o x ) ) |
| 30 |
21 26 29
|
3eqtr4d |
|- ( ( x e. _om /\ A e. On /\ ( A +no x ) = ( A +o x ) ) -> ( A +no suc x ) = ( A +o suc x ) ) |
| 31 |
30
|
3exp |
|- ( x e. _om -> ( A e. On -> ( ( A +no x ) = ( A +o x ) -> ( A +no suc x ) = ( A +o suc x ) ) ) ) |
| 32 |
31
|
a2d |
|- ( x e. _om -> ( ( A e. On -> ( A +no x ) = ( A +o x ) ) -> ( A e. On -> ( A +no suc x ) = ( A +o suc x ) ) ) ) |
| 33 |
4 8 12 16 19 32
|
finds |
|- ( B e. _om -> ( A e. On -> ( A +no B ) = ( A +o B ) ) ) |
| 34 |
33
|
impcom |
|- ( ( A e. On /\ B e. _om ) -> ( A +no B ) = ( A +o B ) ) |