| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|- ( x = (/) -> ( A +o x ) = ( A +o (/) ) ) |
| 2 |
|
oveq2 |
|- ( x = (/) -> ( A +no x ) = ( A +no (/) ) ) |
| 3 |
1 2
|
eqeq12d |
|- ( x = (/) -> ( ( A +o x ) = ( A +no x ) <-> ( A +o (/) ) = ( A +no (/) ) ) ) |
| 4 |
3
|
imbi2d |
|- ( x = (/) -> ( ( A e. On -> ( A +o x ) = ( A +no x ) ) <-> ( A e. On -> ( A +o (/) ) = ( A +no (/) ) ) ) ) |
| 5 |
|
oveq2 |
|- ( x = y -> ( A +o x ) = ( A +o y ) ) |
| 6 |
|
oveq2 |
|- ( x = y -> ( A +no x ) = ( A +no y ) ) |
| 7 |
5 6
|
eqeq12d |
|- ( x = y -> ( ( A +o x ) = ( A +no x ) <-> ( A +o y ) = ( A +no y ) ) ) |
| 8 |
7
|
imbi2d |
|- ( x = y -> ( ( A e. On -> ( A +o x ) = ( A +no x ) ) <-> ( A e. On -> ( A +o y ) = ( A +no y ) ) ) ) |
| 9 |
|
oveq2 |
|- ( x = suc y -> ( A +o x ) = ( A +o suc y ) ) |
| 10 |
|
oveq2 |
|- ( x = suc y -> ( A +no x ) = ( A +no suc y ) ) |
| 11 |
9 10
|
eqeq12d |
|- ( x = suc y -> ( ( A +o x ) = ( A +no x ) <-> ( A +o suc y ) = ( A +no suc y ) ) ) |
| 12 |
11
|
imbi2d |
|- ( x = suc y -> ( ( A e. On -> ( A +o x ) = ( A +no x ) ) <-> ( A e. On -> ( A +o suc y ) = ( A +no suc y ) ) ) ) |
| 13 |
|
oveq2 |
|- ( x = B -> ( A +o x ) = ( A +o B ) ) |
| 14 |
|
oveq2 |
|- ( x = B -> ( A +no x ) = ( A +no B ) ) |
| 15 |
13 14
|
eqeq12d |
|- ( x = B -> ( ( A +o x ) = ( A +no x ) <-> ( A +o B ) = ( A +no B ) ) ) |
| 16 |
15
|
imbi2d |
|- ( x = B -> ( ( A e. On -> ( A +o x ) = ( A +no x ) ) <-> ( A e. On -> ( A +o B ) = ( A +no B ) ) ) ) |
| 17 |
|
oa0 |
|- ( A e. On -> ( A +o (/) ) = A ) |
| 18 |
|
naddrid |
|- ( A e. On -> ( A +no (/) ) = A ) |
| 19 |
17 18
|
eqtr4d |
|- ( A e. On -> ( A +o (/) ) = ( A +no (/) ) ) |
| 20 |
|
nnon |
|- ( y e. _om -> y e. On ) |
| 21 |
|
suceq |
|- ( ( A +o y ) = ( A +no y ) -> suc ( A +o y ) = suc ( A +no y ) ) |
| 22 |
21
|
adantl |
|- ( ( ( A e. On /\ y e. On ) /\ ( A +o y ) = ( A +no y ) ) -> suc ( A +o y ) = suc ( A +no y ) ) |
| 23 |
|
oasuc |
|- ( ( A e. On /\ y e. On ) -> ( A +o suc y ) = suc ( A +o y ) ) |
| 24 |
23
|
adantr |
|- ( ( ( A e. On /\ y e. On ) /\ ( A +o y ) = ( A +no y ) ) -> ( A +o suc y ) = suc ( A +o y ) ) |
| 25 |
|
naddsuc2 |
|- ( ( A e. On /\ y e. On ) -> ( A +no suc y ) = suc ( A +no y ) ) |
| 26 |
25
|
adantr |
|- ( ( ( A e. On /\ y e. On ) /\ ( A +o y ) = ( A +no y ) ) -> ( A +no suc y ) = suc ( A +no y ) ) |
| 27 |
22 24 26
|
3eqtr4d |
|- ( ( ( A e. On /\ y e. On ) /\ ( A +o y ) = ( A +no y ) ) -> ( A +o suc y ) = ( A +no suc y ) ) |
| 28 |
27
|
ex |
|- ( ( A e. On /\ y e. On ) -> ( ( A +o y ) = ( A +no y ) -> ( A +o suc y ) = ( A +no suc y ) ) ) |
| 29 |
28
|
expcom |
|- ( y e. On -> ( A e. On -> ( ( A +o y ) = ( A +no y ) -> ( A +o suc y ) = ( A +no suc y ) ) ) ) |
| 30 |
20 29
|
syl |
|- ( y e. _om -> ( A e. On -> ( ( A +o y ) = ( A +no y ) -> ( A +o suc y ) = ( A +no suc y ) ) ) ) |
| 31 |
30
|
a2d |
|- ( y e. _om -> ( ( A e. On -> ( A +o y ) = ( A +no y ) ) -> ( A e. On -> ( A +o suc y ) = ( A +no suc y ) ) ) ) |
| 32 |
4 8 12 16 19 31
|
finds |
|- ( B e. _om -> ( A e. On -> ( A +o B ) = ( A +no B ) ) ) |
| 33 |
32
|
impcom |
|- ( ( A e. On /\ B e. _om ) -> ( A +o B ) = ( A +no B ) ) |