Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( x = (/) -> ( A +o x ) = ( A +o (/) ) ) |
2 |
|
oveq2 |
|- ( x = (/) -> ( A +no x ) = ( A +no (/) ) ) |
3 |
1 2
|
eqeq12d |
|- ( x = (/) -> ( ( A +o x ) = ( A +no x ) <-> ( A +o (/) ) = ( A +no (/) ) ) ) |
4 |
3
|
imbi2d |
|- ( x = (/) -> ( ( A e. On -> ( A +o x ) = ( A +no x ) ) <-> ( A e. On -> ( A +o (/) ) = ( A +no (/) ) ) ) ) |
5 |
|
oveq2 |
|- ( x = y -> ( A +o x ) = ( A +o y ) ) |
6 |
|
oveq2 |
|- ( x = y -> ( A +no x ) = ( A +no y ) ) |
7 |
5 6
|
eqeq12d |
|- ( x = y -> ( ( A +o x ) = ( A +no x ) <-> ( A +o y ) = ( A +no y ) ) ) |
8 |
7
|
imbi2d |
|- ( x = y -> ( ( A e. On -> ( A +o x ) = ( A +no x ) ) <-> ( A e. On -> ( A +o y ) = ( A +no y ) ) ) ) |
9 |
|
oveq2 |
|- ( x = suc y -> ( A +o x ) = ( A +o suc y ) ) |
10 |
|
oveq2 |
|- ( x = suc y -> ( A +no x ) = ( A +no suc y ) ) |
11 |
9 10
|
eqeq12d |
|- ( x = suc y -> ( ( A +o x ) = ( A +no x ) <-> ( A +o suc y ) = ( A +no suc y ) ) ) |
12 |
11
|
imbi2d |
|- ( x = suc y -> ( ( A e. On -> ( A +o x ) = ( A +no x ) ) <-> ( A e. On -> ( A +o suc y ) = ( A +no suc y ) ) ) ) |
13 |
|
oveq2 |
|- ( x = B -> ( A +o x ) = ( A +o B ) ) |
14 |
|
oveq2 |
|- ( x = B -> ( A +no x ) = ( A +no B ) ) |
15 |
13 14
|
eqeq12d |
|- ( x = B -> ( ( A +o x ) = ( A +no x ) <-> ( A +o B ) = ( A +no B ) ) ) |
16 |
15
|
imbi2d |
|- ( x = B -> ( ( A e. On -> ( A +o x ) = ( A +no x ) ) <-> ( A e. On -> ( A +o B ) = ( A +no B ) ) ) ) |
17 |
|
oa0 |
|- ( A e. On -> ( A +o (/) ) = A ) |
18 |
|
naddrid |
|- ( A e. On -> ( A +no (/) ) = A ) |
19 |
17 18
|
eqtr4d |
|- ( A e. On -> ( A +o (/) ) = ( A +no (/) ) ) |
20 |
|
nnon |
|- ( y e. _om -> y e. On ) |
21 |
|
suceq |
|- ( ( A +o y ) = ( A +no y ) -> suc ( A +o y ) = suc ( A +no y ) ) |
22 |
21
|
adantl |
|- ( ( ( A e. On /\ y e. On ) /\ ( A +o y ) = ( A +no y ) ) -> suc ( A +o y ) = suc ( A +no y ) ) |
23 |
|
oasuc |
|- ( ( A e. On /\ y e. On ) -> ( A +o suc y ) = suc ( A +o y ) ) |
24 |
23
|
adantr |
|- ( ( ( A e. On /\ y e. On ) /\ ( A +o y ) = ( A +no y ) ) -> ( A +o suc y ) = suc ( A +o y ) ) |
25 |
|
naddsuc2 |
|- ( ( A e. On /\ y e. On ) -> ( A +no suc y ) = suc ( A +no y ) ) |
26 |
25
|
adantr |
|- ( ( ( A e. On /\ y e. On ) /\ ( A +o y ) = ( A +no y ) ) -> ( A +no suc y ) = suc ( A +no y ) ) |
27 |
22 24 26
|
3eqtr4d |
|- ( ( ( A e. On /\ y e. On ) /\ ( A +o y ) = ( A +no y ) ) -> ( A +o suc y ) = ( A +no suc y ) ) |
28 |
27
|
ex |
|- ( ( A e. On /\ y e. On ) -> ( ( A +o y ) = ( A +no y ) -> ( A +o suc y ) = ( A +no suc y ) ) ) |
29 |
28
|
expcom |
|- ( y e. On -> ( A e. On -> ( ( A +o y ) = ( A +no y ) -> ( A +o suc y ) = ( A +no suc y ) ) ) ) |
30 |
20 29
|
syl |
|- ( y e. _om -> ( A e. On -> ( ( A +o y ) = ( A +no y ) -> ( A +o suc y ) = ( A +no suc y ) ) ) ) |
31 |
30
|
a2d |
|- ( y e. _om -> ( ( A e. On -> ( A +o y ) = ( A +no y ) ) -> ( A e. On -> ( A +o suc y ) = ( A +no suc y ) ) ) ) |
32 |
4 8 12 16 19 31
|
finds |
|- ( B e. _om -> ( A e. On -> ( A +o B ) = ( A +no B ) ) ) |
33 |
32
|
impcom |
|- ( ( A e. On /\ B e. _om ) -> ( A +o B ) = ( A +no B ) ) |