Step |
Hyp |
Ref |
Expression |
1 |
|
naddwordnex.a |
|- ( ph -> A = ( ( _om .o C ) +o M ) ) |
2 |
|
naddwordnex.b |
|- ( ph -> B = ( ( _om .o D ) +o N ) ) |
3 |
|
naddwordnex.c |
|- ( ph -> C e. D ) |
4 |
|
naddwordnex.d |
|- ( ph -> D e. On ) |
5 |
|
naddwordnex.m |
|- ( ph -> M e. _om ) |
6 |
|
naddwordnex.n |
|- ( ph -> N e. M ) |
7 |
|
omelon |
|- _om e. On |
8 |
7
|
a1i |
|- ( ph -> _om e. On ) |
9 |
|
onelon |
|- ( ( D e. On /\ C e. D ) -> C e. On ) |
10 |
4 3 9
|
syl2anc |
|- ( ph -> C e. On ) |
11 |
|
omcl |
|- ( ( _om e. On /\ C e. On ) -> ( _om .o C ) e. On ) |
12 |
8 10 11
|
syl2anc |
|- ( ph -> ( _om .o C ) e. On ) |
13 |
8 12
|
jca |
|- ( ph -> ( _om e. On /\ ( _om .o C ) e. On ) ) |
14 |
|
oaordi |
|- ( ( _om e. On /\ ( _om .o C ) e. On ) -> ( M e. _om -> ( ( _om .o C ) +o M ) e. ( ( _om .o C ) +o _om ) ) ) |
15 |
13 5 14
|
sylc |
|- ( ph -> ( ( _om .o C ) +o M ) e. ( ( _om .o C ) +o _om ) ) |
16 |
|
omsuc |
|- ( ( _om e. On /\ C e. On ) -> ( _om .o suc C ) = ( ( _om .o C ) +o _om ) ) |
17 |
8 10 16
|
syl2anc |
|- ( ph -> ( _om .o suc C ) = ( ( _om .o C ) +o _om ) ) |
18 |
15 1 17
|
3eltr4d |
|- ( ph -> A e. ( _om .o suc C ) ) |
19 |
|
onsuc |
|- ( C e. On -> suc C e. On ) |
20 |
10 19
|
syl |
|- ( ph -> suc C e. On ) |
21 |
20 4 8
|
3jca |
|- ( ph -> ( suc C e. On /\ D e. On /\ _om e. On ) ) |
22 |
|
onsucss |
|- ( D e. On -> ( C e. D -> suc C C_ D ) ) |
23 |
4 3 22
|
sylc |
|- ( ph -> suc C C_ D ) |
24 |
|
omwordi |
|- ( ( suc C e. On /\ D e. On /\ _om e. On ) -> ( suc C C_ D -> ( _om .o suc C ) C_ ( _om .o D ) ) ) |
25 |
21 23 24
|
sylc |
|- ( ph -> ( _om .o suc C ) C_ ( _om .o D ) ) |
26 |
|
omcl |
|- ( ( _om e. On /\ D e. On ) -> ( _om .o D ) e. On ) |
27 |
8 4 26
|
syl2anc |
|- ( ph -> ( _om .o D ) e. On ) |
28 |
6 5
|
jca |
|- ( ph -> ( N e. M /\ M e. _om ) ) |
29 |
|
ontr1 |
|- ( _om e. On -> ( ( N e. M /\ M e. _om ) -> N e. _om ) ) |
30 |
8 28 29
|
sylc |
|- ( ph -> N e. _om ) |
31 |
|
nnon |
|- ( N e. _om -> N e. On ) |
32 |
30 31
|
syl |
|- ( ph -> N e. On ) |
33 |
|
oaword1 |
|- ( ( ( _om .o D ) e. On /\ N e. On ) -> ( _om .o D ) C_ ( ( _om .o D ) +o N ) ) |
34 |
27 32 33
|
syl2anc |
|- ( ph -> ( _om .o D ) C_ ( ( _om .o D ) +o N ) ) |
35 |
25 34
|
sstrd |
|- ( ph -> ( _om .o suc C ) C_ ( ( _om .o D ) +o N ) ) |
36 |
35 2
|
sseqtrrd |
|- ( ph -> ( _om .o suc C ) C_ B ) |
37 |
18 36
|
jca |
|- ( ph -> ( A e. ( _om .o suc C ) /\ ( _om .o suc C ) C_ B ) ) |