Metamath Proof Explorer


Theorem naddwordnexlem1

Description: When A is the sum of a limit ordinal (or zero) and a natural number and B is the sum of a larger limit ordinal and a smaller natural number, B is equal to or larger than A . (Contributed by RP, 14-Feb-2025)

Ref Expression
Hypotheses naddwordnex.a
|- ( ph -> A = ( ( _om .o C ) +o M ) )
naddwordnex.b
|- ( ph -> B = ( ( _om .o D ) +o N ) )
naddwordnex.c
|- ( ph -> C e. D )
naddwordnex.d
|- ( ph -> D e. On )
naddwordnex.m
|- ( ph -> M e. _om )
naddwordnex.n
|- ( ph -> N e. M )
Assertion naddwordnexlem1
|- ( ph -> A C_ B )

Proof

Step Hyp Ref Expression
1 naddwordnex.a
 |-  ( ph -> A = ( ( _om .o C ) +o M ) )
2 naddwordnex.b
 |-  ( ph -> B = ( ( _om .o D ) +o N ) )
3 naddwordnex.c
 |-  ( ph -> C e. D )
4 naddwordnex.d
 |-  ( ph -> D e. On )
5 naddwordnex.m
 |-  ( ph -> M e. _om )
6 naddwordnex.n
 |-  ( ph -> N e. M )
7 1 2 3 4 5 6 naddwordnexlem0
 |-  ( ph -> ( A e. ( _om .o suc C ) /\ ( _om .o suc C ) C_ B ) )
8 omelon
 |-  _om e. On
9 onelon
 |-  ( ( D e. On /\ C e. D ) -> C e. On )
10 4 3 9 syl2anc
 |-  ( ph -> C e. On )
11 onsuc
 |-  ( C e. On -> suc C e. On )
12 10 11 syl
 |-  ( ph -> suc C e. On )
13 omcl
 |-  ( ( _om e. On /\ suc C e. On ) -> ( _om .o suc C ) e. On )
14 8 12 13 sylancr
 |-  ( ph -> ( _om .o suc C ) e. On )
15 onelss
 |-  ( ( _om .o suc C ) e. On -> ( A e. ( _om .o suc C ) -> A C_ ( _om .o suc C ) ) )
16 14 15 syl
 |-  ( ph -> ( A e. ( _om .o suc C ) -> A C_ ( _om .o suc C ) ) )
17 16 adantrd
 |-  ( ph -> ( ( A e. ( _om .o suc C ) /\ ( _om .o suc C ) C_ B ) -> A C_ ( _om .o suc C ) ) )
18 17 imp
 |-  ( ( ph /\ ( A e. ( _om .o suc C ) /\ ( _om .o suc C ) C_ B ) ) -> A C_ ( _om .o suc C ) )
19 simprr
 |-  ( ( ph /\ ( A e. ( _om .o suc C ) /\ ( _om .o suc C ) C_ B ) ) -> ( _om .o suc C ) C_ B )
20 18 19 sstrd
 |-  ( ( ph /\ ( A e. ( _om .o suc C ) /\ ( _om .o suc C ) C_ B ) ) -> A C_ B )
21 7 20 mpdan
 |-  ( ph -> A C_ B )