| Step |
Hyp |
Ref |
Expression |
| 1 |
|
naddwordnex.a |
|- ( ph -> A = ( ( _om .o C ) +o M ) ) |
| 2 |
|
naddwordnex.b |
|- ( ph -> B = ( ( _om .o D ) +o N ) ) |
| 3 |
|
naddwordnex.c |
|- ( ph -> C e. D ) |
| 4 |
|
naddwordnex.d |
|- ( ph -> D e. On ) |
| 5 |
|
naddwordnex.m |
|- ( ph -> M e. _om ) |
| 6 |
|
naddwordnex.n |
|- ( ph -> N e. M ) |
| 7 |
1 2 3 4 5 6
|
naddwordnexlem0 |
|- ( ph -> ( A e. ( _om .o suc C ) /\ ( _om .o suc C ) C_ B ) ) |
| 8 |
|
omelon |
|- _om e. On |
| 9 |
|
onelon |
|- ( ( D e. On /\ C e. D ) -> C e. On ) |
| 10 |
4 3 9
|
syl2anc |
|- ( ph -> C e. On ) |
| 11 |
|
onsuc |
|- ( C e. On -> suc C e. On ) |
| 12 |
10 11
|
syl |
|- ( ph -> suc C e. On ) |
| 13 |
|
omcl |
|- ( ( _om e. On /\ suc C e. On ) -> ( _om .o suc C ) e. On ) |
| 14 |
8 12 13
|
sylancr |
|- ( ph -> ( _om .o suc C ) e. On ) |
| 15 |
|
onelss |
|- ( ( _om .o suc C ) e. On -> ( A e. ( _om .o suc C ) -> A C_ ( _om .o suc C ) ) ) |
| 16 |
14 15
|
syl |
|- ( ph -> ( A e. ( _om .o suc C ) -> A C_ ( _om .o suc C ) ) ) |
| 17 |
16
|
adantrd |
|- ( ph -> ( ( A e. ( _om .o suc C ) /\ ( _om .o suc C ) C_ B ) -> A C_ ( _om .o suc C ) ) ) |
| 18 |
17
|
imp |
|- ( ( ph /\ ( A e. ( _om .o suc C ) /\ ( _om .o suc C ) C_ B ) ) -> A C_ ( _om .o suc C ) ) |
| 19 |
|
simprr |
|- ( ( ph /\ ( A e. ( _om .o suc C ) /\ ( _om .o suc C ) C_ B ) ) -> ( _om .o suc C ) C_ B ) |
| 20 |
18 19
|
sstrd |
|- ( ( ph /\ ( A e. ( _om .o suc C ) /\ ( _om .o suc C ) C_ B ) ) -> A C_ B ) |
| 21 |
7 20
|
mpdan |
|- ( ph -> A C_ B ) |