| Step |
Hyp |
Ref |
Expression |
| 1 |
|
naddwordnex.a |
⊢ ( 𝜑 → 𝐴 = ( ( ω ·o 𝐶 ) +o 𝑀 ) ) |
| 2 |
|
naddwordnex.b |
⊢ ( 𝜑 → 𝐵 = ( ( ω ·o 𝐷 ) +o 𝑁 ) ) |
| 3 |
|
naddwordnex.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝐷 ) |
| 4 |
|
naddwordnex.d |
⊢ ( 𝜑 → 𝐷 ∈ On ) |
| 5 |
|
naddwordnex.m |
⊢ ( 𝜑 → 𝑀 ∈ ω ) |
| 6 |
|
naddwordnex.n |
⊢ ( 𝜑 → 𝑁 ∈ 𝑀 ) |
| 7 |
1 2 3 4 5 6
|
naddwordnexlem0 |
⊢ ( 𝜑 → ( 𝐴 ∈ ( ω ·o suc 𝐶 ) ∧ ( ω ·o suc 𝐶 ) ⊆ 𝐵 ) ) |
| 8 |
|
omelon |
⊢ ω ∈ On |
| 9 |
|
onelon |
⊢ ( ( 𝐷 ∈ On ∧ 𝐶 ∈ 𝐷 ) → 𝐶 ∈ On ) |
| 10 |
4 3 9
|
syl2anc |
⊢ ( 𝜑 → 𝐶 ∈ On ) |
| 11 |
|
onsuc |
⊢ ( 𝐶 ∈ On → suc 𝐶 ∈ On ) |
| 12 |
10 11
|
syl |
⊢ ( 𝜑 → suc 𝐶 ∈ On ) |
| 13 |
|
omcl |
⊢ ( ( ω ∈ On ∧ suc 𝐶 ∈ On ) → ( ω ·o suc 𝐶 ) ∈ On ) |
| 14 |
8 12 13
|
sylancr |
⊢ ( 𝜑 → ( ω ·o suc 𝐶 ) ∈ On ) |
| 15 |
|
onelss |
⊢ ( ( ω ·o suc 𝐶 ) ∈ On → ( 𝐴 ∈ ( ω ·o suc 𝐶 ) → 𝐴 ⊆ ( ω ·o suc 𝐶 ) ) ) |
| 16 |
14 15
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∈ ( ω ·o suc 𝐶 ) → 𝐴 ⊆ ( ω ·o suc 𝐶 ) ) ) |
| 17 |
16
|
adantrd |
⊢ ( 𝜑 → ( ( 𝐴 ∈ ( ω ·o suc 𝐶 ) ∧ ( ω ·o suc 𝐶 ) ⊆ 𝐵 ) → 𝐴 ⊆ ( ω ·o suc 𝐶 ) ) ) |
| 18 |
17
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ( ω ·o suc 𝐶 ) ∧ ( ω ·o suc 𝐶 ) ⊆ 𝐵 ) ) → 𝐴 ⊆ ( ω ·o suc 𝐶 ) ) |
| 19 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ( ω ·o suc 𝐶 ) ∧ ( ω ·o suc 𝐶 ) ⊆ 𝐵 ) ) → ( ω ·o suc 𝐶 ) ⊆ 𝐵 ) |
| 20 |
18 19
|
sstrd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ( ω ·o suc 𝐶 ) ∧ ( ω ·o suc 𝐶 ) ⊆ 𝐵 ) ) → 𝐴 ⊆ 𝐵 ) |
| 21 |
7 20
|
mpdan |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |