Metamath Proof Explorer


Theorem naddwordnexlem1

Description: When A is the sum of a limit ordinal (or zero) and a natural number and B is the sum of a larger limit ordinal and a smaller natural number, B is equal to or larger than A . (Contributed by RP, 14-Feb-2025)

Ref Expression
Hypotheses naddwordnex.a ( 𝜑𝐴 = ( ( ω ·o 𝐶 ) +o 𝑀 ) )
naddwordnex.b ( 𝜑𝐵 = ( ( ω ·o 𝐷 ) +o 𝑁 ) )
naddwordnex.c ( 𝜑𝐶𝐷 )
naddwordnex.d ( 𝜑𝐷 ∈ On )
naddwordnex.m ( 𝜑𝑀 ∈ ω )
naddwordnex.n ( 𝜑𝑁𝑀 )
Assertion naddwordnexlem1 ( 𝜑𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 naddwordnex.a ( 𝜑𝐴 = ( ( ω ·o 𝐶 ) +o 𝑀 ) )
2 naddwordnex.b ( 𝜑𝐵 = ( ( ω ·o 𝐷 ) +o 𝑁 ) )
3 naddwordnex.c ( 𝜑𝐶𝐷 )
4 naddwordnex.d ( 𝜑𝐷 ∈ On )
5 naddwordnex.m ( 𝜑𝑀 ∈ ω )
6 naddwordnex.n ( 𝜑𝑁𝑀 )
7 1 2 3 4 5 6 naddwordnexlem0 ( 𝜑 → ( 𝐴 ∈ ( ω ·o suc 𝐶 ) ∧ ( ω ·o suc 𝐶 ) ⊆ 𝐵 ) )
8 omelon ω ∈ On
9 onelon ( ( 𝐷 ∈ On ∧ 𝐶𝐷 ) → 𝐶 ∈ On )
10 4 3 9 syl2anc ( 𝜑𝐶 ∈ On )
11 onsuc ( 𝐶 ∈ On → suc 𝐶 ∈ On )
12 10 11 syl ( 𝜑 → suc 𝐶 ∈ On )
13 omcl ( ( ω ∈ On ∧ suc 𝐶 ∈ On ) → ( ω ·o suc 𝐶 ) ∈ On )
14 8 12 13 sylancr ( 𝜑 → ( ω ·o suc 𝐶 ) ∈ On )
15 onelss ( ( ω ·o suc 𝐶 ) ∈ On → ( 𝐴 ∈ ( ω ·o suc 𝐶 ) → 𝐴 ⊆ ( ω ·o suc 𝐶 ) ) )
16 14 15 syl ( 𝜑 → ( 𝐴 ∈ ( ω ·o suc 𝐶 ) → 𝐴 ⊆ ( ω ·o suc 𝐶 ) ) )
17 16 adantrd ( 𝜑 → ( ( 𝐴 ∈ ( ω ·o suc 𝐶 ) ∧ ( ω ·o suc 𝐶 ) ⊆ 𝐵 ) → 𝐴 ⊆ ( ω ·o suc 𝐶 ) ) )
18 17 imp ( ( 𝜑 ∧ ( 𝐴 ∈ ( ω ·o suc 𝐶 ) ∧ ( ω ·o suc 𝐶 ) ⊆ 𝐵 ) ) → 𝐴 ⊆ ( ω ·o suc 𝐶 ) )
19 simprr ( ( 𝜑 ∧ ( 𝐴 ∈ ( ω ·o suc 𝐶 ) ∧ ( ω ·o suc 𝐶 ) ⊆ 𝐵 ) ) → ( ω ·o suc 𝐶 ) ⊆ 𝐵 )
20 18 19 sstrd ( ( 𝜑 ∧ ( 𝐴 ∈ ( ω ·o suc 𝐶 ) ∧ ( ω ·o suc 𝐶 ) ⊆ 𝐵 ) ) → 𝐴𝐵 )
21 7 20 mpdan ( 𝜑𝐴𝐵 )