Metamath Proof Explorer


Theorem naddwordnexlem2

Description: When A is the sum of a limit ordinal (or zero) and a natural number and B is the sum of a larger limit ordinal and a smaller natural number, B is larger than A . (Contributed by RP, 14-Feb-2025)

Ref Expression
Hypotheses naddwordnex.a ( 𝜑𝐴 = ( ( ω ·o 𝐶 ) +o 𝑀 ) )
naddwordnex.b ( 𝜑𝐵 = ( ( ω ·o 𝐷 ) +o 𝑁 ) )
naddwordnex.c ( 𝜑𝐶𝐷 )
naddwordnex.d ( 𝜑𝐷 ∈ On )
naddwordnex.m ( 𝜑𝑀 ∈ ω )
naddwordnex.n ( 𝜑𝑁𝑀 )
Assertion naddwordnexlem2 ( 𝜑𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 naddwordnex.a ( 𝜑𝐴 = ( ( ω ·o 𝐶 ) +o 𝑀 ) )
2 naddwordnex.b ( 𝜑𝐵 = ( ( ω ·o 𝐷 ) +o 𝑁 ) )
3 naddwordnex.c ( 𝜑𝐶𝐷 )
4 naddwordnex.d ( 𝜑𝐷 ∈ On )
5 naddwordnex.m ( 𝜑𝑀 ∈ ω )
6 naddwordnex.n ( 𝜑𝑁𝑀 )
7 1 2 3 4 5 6 naddwordnexlem0 ( 𝜑 → ( 𝐴 ∈ ( ω ·o suc 𝐶 ) ∧ ( ω ·o suc 𝐶 ) ⊆ 𝐵 ) )
8 ssel ( ( ω ·o suc 𝐶 ) ⊆ 𝐵 → ( 𝐴 ∈ ( ω ·o suc 𝐶 ) → 𝐴𝐵 ) )
9 8 impcom ( ( 𝐴 ∈ ( ω ·o suc 𝐶 ) ∧ ( ω ·o suc 𝐶 ) ⊆ 𝐵 ) → 𝐴𝐵 )
10 7 9 syl ( 𝜑𝐴𝐵 )