Metamath Proof Explorer


Theorem naddwordnexlem2

Description: When A is the sum of a limit ordinal (or zero) and a natural number and B is the sum of a larger limit ordinal and a smaller natural number, B is larger than A . (Contributed by RP, 14-Feb-2025)

Ref Expression
Hypotheses naddwordnex.a
|- ( ph -> A = ( ( _om .o C ) +o M ) )
naddwordnex.b
|- ( ph -> B = ( ( _om .o D ) +o N ) )
naddwordnex.c
|- ( ph -> C e. D )
naddwordnex.d
|- ( ph -> D e. On )
naddwordnex.m
|- ( ph -> M e. _om )
naddwordnex.n
|- ( ph -> N e. M )
Assertion naddwordnexlem2
|- ( ph -> A e. B )

Proof

Step Hyp Ref Expression
1 naddwordnex.a
 |-  ( ph -> A = ( ( _om .o C ) +o M ) )
2 naddwordnex.b
 |-  ( ph -> B = ( ( _om .o D ) +o N ) )
3 naddwordnex.c
 |-  ( ph -> C e. D )
4 naddwordnex.d
 |-  ( ph -> D e. On )
5 naddwordnex.m
 |-  ( ph -> M e. _om )
6 naddwordnex.n
 |-  ( ph -> N e. M )
7 1 2 3 4 5 6 naddwordnexlem0
 |-  ( ph -> ( A e. ( _om .o suc C ) /\ ( _om .o suc C ) C_ B ) )
8 ssel
 |-  ( ( _om .o suc C ) C_ B -> ( A e. ( _om .o suc C ) -> A e. B ) )
9 8 impcom
 |-  ( ( A e. ( _om .o suc C ) /\ ( _om .o suc C ) C_ B ) -> A e. B )
10 7 9 syl
 |-  ( ph -> A e. B )