Description: When A is the sum of a limit ordinal (or zero) and a natural number and B is the sum of a larger limit ordinal and a smaller natural number, B is larger than A . (Contributed by RP, 14-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | naddwordnex.a | |- ( ph -> A = ( ( _om .o C ) +o M ) ) |
|
naddwordnex.b | |- ( ph -> B = ( ( _om .o D ) +o N ) ) |
||
naddwordnex.c | |- ( ph -> C e. D ) |
||
naddwordnex.d | |- ( ph -> D e. On ) |
||
naddwordnex.m | |- ( ph -> M e. _om ) |
||
naddwordnex.n | |- ( ph -> N e. M ) |
||
Assertion | naddwordnexlem2 | |- ( ph -> A e. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | naddwordnex.a | |- ( ph -> A = ( ( _om .o C ) +o M ) ) |
|
2 | naddwordnex.b | |- ( ph -> B = ( ( _om .o D ) +o N ) ) |
|
3 | naddwordnex.c | |- ( ph -> C e. D ) |
|
4 | naddwordnex.d | |- ( ph -> D e. On ) |
|
5 | naddwordnex.m | |- ( ph -> M e. _om ) |
|
6 | naddwordnex.n | |- ( ph -> N e. M ) |
|
7 | 1 2 3 4 5 6 | naddwordnexlem0 | |- ( ph -> ( A e. ( _om .o suc C ) /\ ( _om .o suc C ) C_ B ) ) |
8 | ssel | |- ( ( _om .o suc C ) C_ B -> ( A e. ( _om .o suc C ) -> A e. B ) ) |
|
9 | 8 | impcom | |- ( ( A e. ( _om .o suc C ) /\ ( _om .o suc C ) C_ B ) -> A e. B ) |
10 | 7 9 | syl | |- ( ph -> A e. B ) |