| Step |
Hyp |
Ref |
Expression |
| 1 |
|
naddwordnex.a |
|- ( ph -> A = ( ( _om .o C ) +o M ) ) |
| 2 |
|
naddwordnex.b |
|- ( ph -> B = ( ( _om .o D ) +o N ) ) |
| 3 |
|
naddwordnex.c |
|- ( ph -> C e. D ) |
| 4 |
|
naddwordnex.d |
|- ( ph -> D e. On ) |
| 5 |
|
naddwordnex.m |
|- ( ph -> M e. _om ) |
| 6 |
|
naddwordnex.n |
|- ( ph -> N e. M ) |
| 7 |
|
omelon |
|- _om e. On |
| 8 |
|
onelon |
|- ( ( D e. On /\ C e. D ) -> C e. On ) |
| 9 |
4 3 8
|
syl2anc |
|- ( ph -> C e. On ) |
| 10 |
|
omcl |
|- ( ( _om e. On /\ C e. On ) -> ( _om .o C ) e. On ) |
| 11 |
7 9 10
|
sylancr |
|- ( ph -> ( _om .o C ) e. On ) |
| 12 |
|
nnon |
|- ( M e. _om -> M e. On ) |
| 13 |
5 12
|
syl |
|- ( ph -> M e. On ) |
| 14 |
|
oacl |
|- ( ( ( _om .o C ) e. On /\ M e. On ) -> ( ( _om .o C ) +o M ) e. On ) |
| 15 |
11 13 14
|
syl2anc |
|- ( ph -> ( ( _om .o C ) +o M ) e. On ) |
| 16 |
1 15
|
eqeltrd |
|- ( ph -> A e. On ) |
| 17 |
|
naddonnn |
|- ( ( A e. On /\ x e. _om ) -> ( A +o x ) = ( A +no x ) ) |
| 18 |
16 17
|
sylan |
|- ( ( ph /\ x e. _om ) -> ( A +o x ) = ( A +no x ) ) |
| 19 |
1 2 3 4 5 6
|
naddwordnexlem0 |
|- ( ph -> ( A e. ( _om .o suc C ) /\ ( _om .o suc C ) C_ B ) ) |
| 20 |
19
|
simprd |
|- ( ph -> ( _om .o suc C ) C_ B ) |
| 21 |
20
|
adantr |
|- ( ( ph /\ x e. _om ) -> ( _om .o suc C ) C_ B ) |
| 22 |
11 7
|
jctil |
|- ( ph -> ( _om e. On /\ ( _om .o C ) e. On ) ) |
| 23 |
22
|
adantr |
|- ( ( ph /\ x e. _om ) -> ( _om e. On /\ ( _om .o C ) e. On ) ) |
| 24 |
|
nnacl |
|- ( ( M e. _om /\ x e. _om ) -> ( M +o x ) e. _om ) |
| 25 |
5 24
|
sylan |
|- ( ( ph /\ x e. _om ) -> ( M +o x ) e. _om ) |
| 26 |
|
oaordi |
|- ( ( _om e. On /\ ( _om .o C ) e. On ) -> ( ( M +o x ) e. _om -> ( ( _om .o C ) +o ( M +o x ) ) e. ( ( _om .o C ) +o _om ) ) ) |
| 27 |
23 25 26
|
sylc |
|- ( ( ph /\ x e. _om ) -> ( ( _om .o C ) +o ( M +o x ) ) e. ( ( _om .o C ) +o _om ) ) |
| 28 |
1
|
adantr |
|- ( ( ph /\ x e. _om ) -> A = ( ( _om .o C ) +o M ) ) |
| 29 |
28
|
oveq1d |
|- ( ( ph /\ x e. _om ) -> ( A +o x ) = ( ( ( _om .o C ) +o M ) +o x ) ) |
| 30 |
|
nnon |
|- ( x e. _om -> x e. On ) |
| 31 |
|
oaass |
|- ( ( ( _om .o C ) e. On /\ M e. On /\ x e. On ) -> ( ( ( _om .o C ) +o M ) +o x ) = ( ( _om .o C ) +o ( M +o x ) ) ) |
| 32 |
11 13 30 31
|
syl2an3an |
|- ( ( ph /\ x e. _om ) -> ( ( ( _om .o C ) +o M ) +o x ) = ( ( _om .o C ) +o ( M +o x ) ) ) |
| 33 |
29 32
|
eqtrd |
|- ( ( ph /\ x e. _om ) -> ( A +o x ) = ( ( _om .o C ) +o ( M +o x ) ) ) |
| 34 |
9
|
adantr |
|- ( ( ph /\ x e. _om ) -> C e. On ) |
| 35 |
|
omsuc |
|- ( ( _om e. On /\ C e. On ) -> ( _om .o suc C ) = ( ( _om .o C ) +o _om ) ) |
| 36 |
7 34 35
|
sylancr |
|- ( ( ph /\ x e. _om ) -> ( _om .o suc C ) = ( ( _om .o C ) +o _om ) ) |
| 37 |
27 33 36
|
3eltr4d |
|- ( ( ph /\ x e. _om ) -> ( A +o x ) e. ( _om .o suc C ) ) |
| 38 |
21 37
|
sseldd |
|- ( ( ph /\ x e. _om ) -> ( A +o x ) e. B ) |
| 39 |
18 38
|
eqeltrrd |
|- ( ( ph /\ x e. _om ) -> ( A +no x ) e. B ) |
| 40 |
39
|
ex |
|- ( ph -> ( x e. _om -> ( A +no x ) e. B ) ) |
| 41 |
40
|
ralrimiv |
|- ( ph -> A. x e. _om ( A +no x ) e. B ) |