Step |
Hyp |
Ref |
Expression |
1 |
|
naddwordnex.a |
|- ( ph -> A = ( ( _om .o C ) +o M ) ) |
2 |
|
naddwordnex.b |
|- ( ph -> B = ( ( _om .o D ) +o N ) ) |
3 |
|
naddwordnex.c |
|- ( ph -> C e. D ) |
4 |
|
naddwordnex.d |
|- ( ph -> D e. On ) |
5 |
|
naddwordnex.m |
|- ( ph -> M e. _om ) |
6 |
|
naddwordnex.n |
|- ( ph -> N e. M ) |
7 |
1 2 3 4 5 6
|
naddwordnexlem1 |
|- ( ph -> A C_ B ) |
8 |
|
omelon |
|- _om e. On |
9 |
8
|
a1i |
|- ( ph -> _om e. On ) |
10 |
|
onelon |
|- ( ( D e. On /\ C e. D ) -> C e. On ) |
11 |
4 3 10
|
syl2anc |
|- ( ph -> C e. On ) |
12 |
|
omcl |
|- ( ( _om e. On /\ C e. On ) -> ( _om .o C ) e. On ) |
13 |
9 11 12
|
syl2anc |
|- ( ph -> ( _om .o C ) e. On ) |
14 |
|
nnon |
|- ( M e. _om -> M e. On ) |
15 |
5 14
|
syl |
|- ( ph -> M e. On ) |
16 |
|
oacl |
|- ( ( ( _om .o C ) e. On /\ M e. On ) -> ( ( _om .o C ) +o M ) e. On ) |
17 |
13 15 16
|
syl2anc |
|- ( ph -> ( ( _om .o C ) +o M ) e. On ) |
18 |
1 17
|
eqeltrd |
|- ( ph -> A e. On ) |
19 |
|
omcl |
|- ( ( _om e. On /\ D e. On ) -> ( _om .o D ) e. On ) |
20 |
9 4 19
|
syl2anc |
|- ( ph -> ( _om .o D ) e. On ) |
21 |
6 5
|
jca |
|- ( ph -> ( N e. M /\ M e. _om ) ) |
22 |
|
ontr1 |
|- ( _om e. On -> ( ( N e. M /\ M e. _om ) -> N e. _om ) ) |
23 |
9 21 22
|
sylc |
|- ( ph -> N e. _om ) |
24 |
|
nnon |
|- ( N e. _om -> N e. On ) |
25 |
23 24
|
syl |
|- ( ph -> N e. On ) |
26 |
|
oacl |
|- ( ( ( _om .o D ) e. On /\ N e. On ) -> ( ( _om .o D ) +o N ) e. On ) |
27 |
20 25 26
|
syl2anc |
|- ( ph -> ( ( _om .o D ) +o N ) e. On ) |
28 |
2 27
|
eqeltrd |
|- ( ph -> B e. On ) |
29 |
|
oawordex |
|- ( ( A e. On /\ B e. On ) -> ( A C_ B <-> E. x e. On ( A +o x ) = B ) ) |
30 |
18 28 29
|
syl2anc |
|- ( ph -> ( A C_ B <-> E. x e. On ( A +o x ) = B ) ) |
31 |
7 30
|
mpbid |
|- ( ph -> E. x e. On ( A +o x ) = B ) |