Metamath Proof Explorer


Theorem oawordex3

Description: When A is the sum of a limit ordinal (or zero) and a natural number and B is the sum of a larger limit ordinal and a smaller natural number, some ordinal sum of A is equal to B . This is a specialization of oawordex . (Contributed by RP, 14-Feb-2025)

Ref Expression
Hypotheses naddwordnex.a ( 𝜑𝐴 = ( ( ω ·o 𝐶 ) +o 𝑀 ) )
naddwordnex.b ( 𝜑𝐵 = ( ( ω ·o 𝐷 ) +o 𝑁 ) )
naddwordnex.c ( 𝜑𝐶𝐷 )
naddwordnex.d ( 𝜑𝐷 ∈ On )
naddwordnex.m ( 𝜑𝑀 ∈ ω )
naddwordnex.n ( 𝜑𝑁𝑀 )
Assertion oawordex3 ( 𝜑 → ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 naddwordnex.a ( 𝜑𝐴 = ( ( ω ·o 𝐶 ) +o 𝑀 ) )
2 naddwordnex.b ( 𝜑𝐵 = ( ( ω ·o 𝐷 ) +o 𝑁 ) )
3 naddwordnex.c ( 𝜑𝐶𝐷 )
4 naddwordnex.d ( 𝜑𝐷 ∈ On )
5 naddwordnex.m ( 𝜑𝑀 ∈ ω )
6 naddwordnex.n ( 𝜑𝑁𝑀 )
7 1 2 3 4 5 6 naddwordnexlem1 ( 𝜑𝐴𝐵 )
8 omelon ω ∈ On
9 8 a1i ( 𝜑 → ω ∈ On )
10 onelon ( ( 𝐷 ∈ On ∧ 𝐶𝐷 ) → 𝐶 ∈ On )
11 4 3 10 syl2anc ( 𝜑𝐶 ∈ On )
12 omcl ( ( ω ∈ On ∧ 𝐶 ∈ On ) → ( ω ·o 𝐶 ) ∈ On )
13 9 11 12 syl2anc ( 𝜑 → ( ω ·o 𝐶 ) ∈ On )
14 nnon ( 𝑀 ∈ ω → 𝑀 ∈ On )
15 5 14 syl ( 𝜑𝑀 ∈ On )
16 oacl ( ( ( ω ·o 𝐶 ) ∈ On ∧ 𝑀 ∈ On ) → ( ( ω ·o 𝐶 ) +o 𝑀 ) ∈ On )
17 13 15 16 syl2anc ( 𝜑 → ( ( ω ·o 𝐶 ) +o 𝑀 ) ∈ On )
18 1 17 eqeltrd ( 𝜑𝐴 ∈ On )
19 omcl ( ( ω ∈ On ∧ 𝐷 ∈ On ) → ( ω ·o 𝐷 ) ∈ On )
20 9 4 19 syl2anc ( 𝜑 → ( ω ·o 𝐷 ) ∈ On )
21 6 5 jca ( 𝜑 → ( 𝑁𝑀𝑀 ∈ ω ) )
22 ontr1 ( ω ∈ On → ( ( 𝑁𝑀𝑀 ∈ ω ) → 𝑁 ∈ ω ) )
23 9 21 22 sylc ( 𝜑𝑁 ∈ ω )
24 nnon ( 𝑁 ∈ ω → 𝑁 ∈ On )
25 23 24 syl ( 𝜑𝑁 ∈ On )
26 oacl ( ( ( ω ·o 𝐷 ) ∈ On ∧ 𝑁 ∈ On ) → ( ( ω ·o 𝐷 ) +o 𝑁 ) ∈ On )
27 20 25 26 syl2anc ( 𝜑 → ( ( ω ·o 𝐷 ) +o 𝑁 ) ∈ On )
28 2 27 eqeltrd ( 𝜑𝐵 ∈ On )
29 oawordex ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴𝐵 ↔ ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 ) )
30 18 28 29 syl2anc ( 𝜑 → ( 𝐴𝐵 ↔ ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 ) )
31 7 30 mpbid ( 𝜑 → ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 )