| Step |
Hyp |
Ref |
Expression |
| 1 |
|
naddwordnex.a |
⊢ ( 𝜑 → 𝐴 = ( ( ω ·o 𝐶 ) +o 𝑀 ) ) |
| 2 |
|
naddwordnex.b |
⊢ ( 𝜑 → 𝐵 = ( ( ω ·o 𝐷 ) +o 𝑁 ) ) |
| 3 |
|
naddwordnex.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝐷 ) |
| 4 |
|
naddwordnex.d |
⊢ ( 𝜑 → 𝐷 ∈ On ) |
| 5 |
|
naddwordnex.m |
⊢ ( 𝜑 → 𝑀 ∈ ω ) |
| 6 |
|
naddwordnex.n |
⊢ ( 𝜑 → 𝑁 ∈ 𝑀 ) |
| 7 |
1 2 3 4 5 6
|
naddwordnexlem1 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
| 8 |
|
omelon |
⊢ ω ∈ On |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → ω ∈ On ) |
| 10 |
|
onelon |
⊢ ( ( 𝐷 ∈ On ∧ 𝐶 ∈ 𝐷 ) → 𝐶 ∈ On ) |
| 11 |
4 3 10
|
syl2anc |
⊢ ( 𝜑 → 𝐶 ∈ On ) |
| 12 |
|
omcl |
⊢ ( ( ω ∈ On ∧ 𝐶 ∈ On ) → ( ω ·o 𝐶 ) ∈ On ) |
| 13 |
9 11 12
|
syl2anc |
⊢ ( 𝜑 → ( ω ·o 𝐶 ) ∈ On ) |
| 14 |
|
nnon |
⊢ ( 𝑀 ∈ ω → 𝑀 ∈ On ) |
| 15 |
5 14
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ On ) |
| 16 |
|
oacl |
⊢ ( ( ( ω ·o 𝐶 ) ∈ On ∧ 𝑀 ∈ On ) → ( ( ω ·o 𝐶 ) +o 𝑀 ) ∈ On ) |
| 17 |
13 15 16
|
syl2anc |
⊢ ( 𝜑 → ( ( ω ·o 𝐶 ) +o 𝑀 ) ∈ On ) |
| 18 |
1 17
|
eqeltrd |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
| 19 |
|
omcl |
⊢ ( ( ω ∈ On ∧ 𝐷 ∈ On ) → ( ω ·o 𝐷 ) ∈ On ) |
| 20 |
9 4 19
|
syl2anc |
⊢ ( 𝜑 → ( ω ·o 𝐷 ) ∈ On ) |
| 21 |
6 5
|
jca |
⊢ ( 𝜑 → ( 𝑁 ∈ 𝑀 ∧ 𝑀 ∈ ω ) ) |
| 22 |
|
ontr1 |
⊢ ( ω ∈ On → ( ( 𝑁 ∈ 𝑀 ∧ 𝑀 ∈ ω ) → 𝑁 ∈ ω ) ) |
| 23 |
9 21 22
|
sylc |
⊢ ( 𝜑 → 𝑁 ∈ ω ) |
| 24 |
|
nnon |
⊢ ( 𝑁 ∈ ω → 𝑁 ∈ On ) |
| 25 |
23 24
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ On ) |
| 26 |
|
oacl |
⊢ ( ( ( ω ·o 𝐷 ) ∈ On ∧ 𝑁 ∈ On ) → ( ( ω ·o 𝐷 ) +o 𝑁 ) ∈ On ) |
| 27 |
20 25 26
|
syl2anc |
⊢ ( 𝜑 → ( ( ω ·o 𝐷 ) +o 𝑁 ) ∈ On ) |
| 28 |
2 27
|
eqeltrd |
⊢ ( 𝜑 → 𝐵 ∈ On ) |
| 29 |
|
oawordex |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 ↔ ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 ) ) |
| 30 |
18 28 29
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ⊆ 𝐵 ↔ ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 ) ) |
| 31 |
7 30
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 ) |