| Step |
Hyp |
Ref |
Expression |
| 1 |
|
naddwordnex.a |
⊢ ( 𝜑 → 𝐴 = ( ( ω ·o 𝐶 ) +o 𝑀 ) ) |
| 2 |
|
naddwordnex.b |
⊢ ( 𝜑 → 𝐵 = ( ( ω ·o 𝐷 ) +o 𝑁 ) ) |
| 3 |
|
naddwordnex.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝐷 ) |
| 4 |
|
naddwordnex.d |
⊢ ( 𝜑 → 𝐷 ∈ On ) |
| 5 |
|
naddwordnex.m |
⊢ ( 𝜑 → 𝑀 ∈ ω ) |
| 6 |
|
naddwordnex.n |
⊢ ( 𝜑 → 𝑁 ∈ 𝑀 ) |
| 7 |
|
naddwordnexlem4.s |
⊢ 𝑆 = { 𝑦 ∈ On ∣ 𝐷 ⊆ ( 𝐶 +o 𝑦 ) } |
| 8 |
7
|
ssrab3 |
⊢ 𝑆 ⊆ On |
| 9 |
|
oveq2 |
⊢ ( 𝑦 = 𝐷 → ( 𝐶 +o 𝑦 ) = ( 𝐶 +o 𝐷 ) ) |
| 10 |
9
|
sseq2d |
⊢ ( 𝑦 = 𝐷 → ( 𝐷 ⊆ ( 𝐶 +o 𝑦 ) ↔ 𝐷 ⊆ ( 𝐶 +o 𝐷 ) ) ) |
| 11 |
|
onelon |
⊢ ( ( 𝐷 ∈ On ∧ 𝐶 ∈ 𝐷 ) → 𝐶 ∈ On ) |
| 12 |
4 3 11
|
syl2anc |
⊢ ( 𝜑 → 𝐶 ∈ On ) |
| 13 |
|
oaword2 |
⊢ ( ( 𝐷 ∈ On ∧ 𝐶 ∈ On ) → 𝐷 ⊆ ( 𝐶 +o 𝐷 ) ) |
| 14 |
4 12 13
|
syl2anc |
⊢ ( 𝜑 → 𝐷 ⊆ ( 𝐶 +o 𝐷 ) ) |
| 15 |
10 4 14
|
elrabd |
⊢ ( 𝜑 → 𝐷 ∈ { 𝑦 ∈ On ∣ 𝐷 ⊆ ( 𝐶 +o 𝑦 ) } ) |
| 16 |
15 7
|
eleqtrrdi |
⊢ ( 𝜑 → 𝐷 ∈ 𝑆 ) |
| 17 |
16
|
ne0d |
⊢ ( 𝜑 → 𝑆 ≠ ∅ ) |
| 18 |
|
oninton |
⊢ ( ( 𝑆 ⊆ On ∧ 𝑆 ≠ ∅ ) → ∩ 𝑆 ∈ On ) |
| 19 |
8 17 18
|
sylancr |
⊢ ( 𝜑 → ∩ 𝑆 ∈ On ) |
| 20 |
|
oveq2 |
⊢ ( 𝑦 = ∅ → ( 𝐶 +o 𝑦 ) = ( 𝐶 +o ∅ ) ) |
| 21 |
|
oa0 |
⊢ ( 𝐶 ∈ On → ( 𝐶 +o ∅ ) = 𝐶 ) |
| 22 |
12 21
|
syl |
⊢ ( 𝜑 → ( 𝐶 +o ∅ ) = 𝐶 ) |
| 23 |
20 22
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑦 = ∅ ) → ( 𝐶 +o 𝑦 ) = 𝐶 ) |
| 24 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 = ∅ ) → 𝐶 ∈ 𝐷 ) |
| 25 |
23 24
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑦 = ∅ ) → ( 𝐶 +o 𝑦 ) ∈ 𝐷 ) |
| 26 |
25
|
ex |
⊢ ( 𝜑 → ( 𝑦 = ∅ → ( 𝐶 +o 𝑦 ) ∈ 𝐷 ) ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ On ) → ( 𝑦 = ∅ → ( 𝐶 +o 𝑦 ) ∈ 𝐷 ) ) |
| 28 |
27
|
con3d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ On ) → ( ¬ ( 𝐶 +o 𝑦 ) ∈ 𝐷 → ¬ 𝑦 = ∅ ) ) |
| 29 |
|
oacl |
⊢ ( ( 𝐶 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐶 +o 𝑦 ) ∈ On ) |
| 30 |
12 29
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ On ) → ( 𝐶 +o 𝑦 ) ∈ On ) |
| 31 |
|
ontri1 |
⊢ ( ( 𝐷 ∈ On ∧ ( 𝐶 +o 𝑦 ) ∈ On ) → ( 𝐷 ⊆ ( 𝐶 +o 𝑦 ) ↔ ¬ ( 𝐶 +o 𝑦 ) ∈ 𝐷 ) ) |
| 32 |
4 30 31
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ On ) → ( 𝐷 ⊆ ( 𝐶 +o 𝑦 ) ↔ ¬ ( 𝐶 +o 𝑦 ) ∈ 𝐷 ) ) |
| 33 |
|
on0eln0 |
⊢ ( 𝑦 ∈ On → ( ∅ ∈ 𝑦 ↔ 𝑦 ≠ ∅ ) ) |
| 34 |
|
df-ne |
⊢ ( 𝑦 ≠ ∅ ↔ ¬ 𝑦 = ∅ ) |
| 35 |
33 34
|
bitrdi |
⊢ ( 𝑦 ∈ On → ( ∅ ∈ 𝑦 ↔ ¬ 𝑦 = ∅ ) ) |
| 36 |
35
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ On ) → ( ∅ ∈ 𝑦 ↔ ¬ 𝑦 = ∅ ) ) |
| 37 |
28 32 36
|
3imtr4d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ On ) → ( 𝐷 ⊆ ( 𝐶 +o 𝑦 ) → ∅ ∈ 𝑦 ) ) |
| 38 |
37
|
ex |
⊢ ( 𝜑 → ( 𝑦 ∈ On → ( 𝐷 ⊆ ( 𝐶 +o 𝑦 ) → ∅ ∈ 𝑦 ) ) ) |
| 39 |
38
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑦 ∈ On ( 𝐷 ⊆ ( 𝐶 +o 𝑦 ) → ∅ ∈ 𝑦 ) ) |
| 40 |
|
0ex |
⊢ ∅ ∈ V |
| 41 |
40
|
elintrab |
⊢ ( ∅ ∈ ∩ { 𝑦 ∈ On ∣ 𝐷 ⊆ ( 𝐶 +o 𝑦 ) } ↔ ∀ 𝑦 ∈ On ( 𝐷 ⊆ ( 𝐶 +o 𝑦 ) → ∅ ∈ 𝑦 ) ) |
| 42 |
39 41
|
sylibr |
⊢ ( 𝜑 → ∅ ∈ ∩ { 𝑦 ∈ On ∣ 𝐷 ⊆ ( 𝐶 +o 𝑦 ) } ) |
| 43 |
7
|
inteqi |
⊢ ∩ 𝑆 = ∩ { 𝑦 ∈ On ∣ 𝐷 ⊆ ( 𝐶 +o 𝑦 ) } |
| 44 |
42 43
|
eleqtrrdi |
⊢ ( 𝜑 → ∅ ∈ ∩ 𝑆 ) |
| 45 |
|
ondif1 |
⊢ ( ∩ 𝑆 ∈ ( On ∖ 1o ) ↔ ( ∩ 𝑆 ∈ On ∧ ∅ ∈ ∩ 𝑆 ) ) |
| 46 |
19 44 45
|
sylanbrc |
⊢ ( 𝜑 → ∩ 𝑆 ∈ ( On ∖ 1o ) ) |
| 47 |
|
onzsl |
⊢ ( ∩ 𝑆 ∈ On ↔ ( ∩ 𝑆 = ∅ ∨ ∃ 𝑧 ∈ On ∩ 𝑆 = suc 𝑧 ∨ ( ∩ 𝑆 ∈ V ∧ Lim ∩ 𝑆 ) ) ) |
| 48 |
19 47
|
sylib |
⊢ ( 𝜑 → ( ∩ 𝑆 = ∅ ∨ ∃ 𝑧 ∈ On ∩ 𝑆 = suc 𝑧 ∨ ( ∩ 𝑆 ∈ V ∧ Lim ∩ 𝑆 ) ) ) |
| 49 |
|
oveq2 |
⊢ ( ∩ 𝑆 = ∅ → ( 𝐶 +o ∩ 𝑆 ) = ( 𝐶 +o ∅ ) ) |
| 50 |
49 22
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ ∩ 𝑆 = ∅ ) → ( 𝐶 +o ∩ 𝑆 ) = 𝐶 ) |
| 51 |
|
onelpss |
⊢ ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) → ( 𝐶 ∈ 𝐷 ↔ ( 𝐶 ⊆ 𝐷 ∧ 𝐶 ≠ 𝐷 ) ) ) |
| 52 |
12 4 51
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 ∈ 𝐷 ↔ ( 𝐶 ⊆ 𝐷 ∧ 𝐶 ≠ 𝐷 ) ) ) |
| 53 |
3 52
|
mpbid |
⊢ ( 𝜑 → ( 𝐶 ⊆ 𝐷 ∧ 𝐶 ≠ 𝐷 ) ) |
| 54 |
53
|
simpld |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐷 ) |
| 55 |
54
|
adantr |
⊢ ( ( 𝜑 ∧ ∩ 𝑆 = ∅ ) → 𝐶 ⊆ 𝐷 ) |
| 56 |
50 55
|
eqsstrd |
⊢ ( ( 𝜑 ∧ ∩ 𝑆 = ∅ ) → ( 𝐶 +o ∩ 𝑆 ) ⊆ 𝐷 ) |
| 57 |
56
|
ex |
⊢ ( 𝜑 → ( ∩ 𝑆 = ∅ → ( 𝐶 +o ∩ 𝑆 ) ⊆ 𝐷 ) ) |
| 58 |
|
oveq2 |
⊢ ( ∩ 𝑆 = suc 𝑧 → ( 𝐶 +o ∩ 𝑆 ) = ( 𝐶 +o suc 𝑧 ) ) |
| 59 |
|
oasuc |
⊢ ( ( 𝐶 ∈ On ∧ 𝑧 ∈ On ) → ( 𝐶 +o suc 𝑧 ) = suc ( 𝐶 +o 𝑧 ) ) |
| 60 |
12 59
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ On ) → ( 𝐶 +o suc 𝑧 ) = suc ( 𝐶 +o 𝑧 ) ) |
| 61 |
58 60
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ On ) ∧ ∩ 𝑆 = suc 𝑧 ) → ( 𝐶 +o ∩ 𝑆 ) = suc ( 𝐶 +o 𝑧 ) ) |
| 62 |
|
vex |
⊢ 𝑧 ∈ V |
| 63 |
62
|
sucid |
⊢ 𝑧 ∈ suc 𝑧 |
| 64 |
|
eleq2 |
⊢ ( ∩ 𝑆 = suc 𝑧 → ( 𝑧 ∈ ∩ 𝑆 ↔ 𝑧 ∈ suc 𝑧 ) ) |
| 65 |
63 64
|
mpbiri |
⊢ ( ∩ 𝑆 = suc 𝑧 → 𝑧 ∈ ∩ 𝑆 ) |
| 66 |
65
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ On ) → ( ∩ 𝑆 = suc 𝑧 → 𝑧 ∈ ∩ 𝑆 ) ) |
| 67 |
43
|
eleq2i |
⊢ ( 𝑧 ∈ ∩ 𝑆 ↔ 𝑧 ∈ ∩ { 𝑦 ∈ On ∣ 𝐷 ⊆ ( 𝐶 +o 𝑦 ) } ) |
| 68 |
|
oveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝐶 +o 𝑦 ) = ( 𝐶 +o 𝑧 ) ) |
| 69 |
68
|
sseq2d |
⊢ ( 𝑦 = 𝑧 → ( 𝐷 ⊆ ( 𝐶 +o 𝑦 ) ↔ 𝐷 ⊆ ( 𝐶 +o 𝑧 ) ) ) |
| 70 |
69
|
onnminsb |
⊢ ( 𝑧 ∈ On → ( 𝑧 ∈ ∩ { 𝑦 ∈ On ∣ 𝐷 ⊆ ( 𝐶 +o 𝑦 ) } → ¬ 𝐷 ⊆ ( 𝐶 +o 𝑧 ) ) ) |
| 71 |
70
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ On ) → ( 𝑧 ∈ ∩ { 𝑦 ∈ On ∣ 𝐷 ⊆ ( 𝐶 +o 𝑦 ) } → ¬ 𝐷 ⊆ ( 𝐶 +o 𝑧 ) ) ) |
| 72 |
67 71
|
biimtrid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ On ) → ( 𝑧 ∈ ∩ 𝑆 → ¬ 𝐷 ⊆ ( 𝐶 +o 𝑧 ) ) ) |
| 73 |
|
oacl |
⊢ ( ( 𝐶 ∈ On ∧ 𝑧 ∈ On ) → ( 𝐶 +o 𝑧 ) ∈ On ) |
| 74 |
12 73
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ On ) → ( 𝐶 +o 𝑧 ) ∈ On ) |
| 75 |
|
ontri1 |
⊢ ( ( 𝐷 ∈ On ∧ ( 𝐶 +o 𝑧 ) ∈ On ) → ( 𝐷 ⊆ ( 𝐶 +o 𝑧 ) ↔ ¬ ( 𝐶 +o 𝑧 ) ∈ 𝐷 ) ) |
| 76 |
4 74 75
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ On ) → ( 𝐷 ⊆ ( 𝐶 +o 𝑧 ) ↔ ¬ ( 𝐶 +o 𝑧 ) ∈ 𝐷 ) ) |
| 77 |
76
|
con2bid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ On ) → ( ( 𝐶 +o 𝑧 ) ∈ 𝐷 ↔ ¬ 𝐷 ⊆ ( 𝐶 +o 𝑧 ) ) ) |
| 78 |
72 77
|
sylibrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ On ) → ( 𝑧 ∈ ∩ 𝑆 → ( 𝐶 +o 𝑧 ) ∈ 𝐷 ) ) |
| 79 |
|
onsucss |
⊢ ( 𝐷 ∈ On → ( ( 𝐶 +o 𝑧 ) ∈ 𝐷 → suc ( 𝐶 +o 𝑧 ) ⊆ 𝐷 ) ) |
| 80 |
4 79
|
syl |
⊢ ( 𝜑 → ( ( 𝐶 +o 𝑧 ) ∈ 𝐷 → suc ( 𝐶 +o 𝑧 ) ⊆ 𝐷 ) ) |
| 81 |
80
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ On ) → ( ( 𝐶 +o 𝑧 ) ∈ 𝐷 → suc ( 𝐶 +o 𝑧 ) ⊆ 𝐷 ) ) |
| 82 |
66 78 81
|
3syld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ On ) → ( ∩ 𝑆 = suc 𝑧 → suc ( 𝐶 +o 𝑧 ) ⊆ 𝐷 ) ) |
| 83 |
82
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ On ) ∧ ∩ 𝑆 = suc 𝑧 ) → suc ( 𝐶 +o 𝑧 ) ⊆ 𝐷 ) |
| 84 |
61 83
|
eqsstrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ On ) ∧ ∩ 𝑆 = suc 𝑧 ) → ( 𝐶 +o ∩ 𝑆 ) ⊆ 𝐷 ) |
| 85 |
84
|
rexlimdva2 |
⊢ ( 𝜑 → ( ∃ 𝑧 ∈ On ∩ 𝑆 = suc 𝑧 → ( 𝐶 +o ∩ 𝑆 ) ⊆ 𝐷 ) ) |
| 86 |
|
oalim |
⊢ ( ( 𝐶 ∈ On ∧ ( ∩ 𝑆 ∈ V ∧ Lim ∩ 𝑆 ) ) → ( 𝐶 +o ∩ 𝑆 ) = ∪ 𝑧 ∈ ∩ 𝑆 ( 𝐶 +o 𝑧 ) ) |
| 87 |
12 86
|
sylan |
⊢ ( ( 𝜑 ∧ ( ∩ 𝑆 ∈ V ∧ Lim ∩ 𝑆 ) ) → ( 𝐶 +o ∩ 𝑆 ) = ∪ 𝑧 ∈ ∩ 𝑆 ( 𝐶 +o 𝑧 ) ) |
| 88 |
|
onelon |
⊢ ( ( ∩ 𝑆 ∈ On ∧ 𝑧 ∈ ∩ 𝑆 ) → 𝑧 ∈ On ) |
| 89 |
19 88
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ∩ 𝑆 ) → 𝑧 ∈ On ) |
| 90 |
89
|
ex |
⊢ ( 𝜑 → ( 𝑧 ∈ ∩ 𝑆 → 𝑧 ∈ On ) ) |
| 91 |
90
|
ancrd |
⊢ ( 𝜑 → ( 𝑧 ∈ ∩ 𝑆 → ( 𝑧 ∈ On ∧ 𝑧 ∈ ∩ 𝑆 ) ) ) |
| 92 |
78
|
expimpd |
⊢ ( 𝜑 → ( ( 𝑧 ∈ On ∧ 𝑧 ∈ ∩ 𝑆 ) → ( 𝐶 +o 𝑧 ) ∈ 𝐷 ) ) |
| 93 |
|
onelss |
⊢ ( 𝐷 ∈ On → ( ( 𝐶 +o 𝑧 ) ∈ 𝐷 → ( 𝐶 +o 𝑧 ) ⊆ 𝐷 ) ) |
| 94 |
4 93
|
syl |
⊢ ( 𝜑 → ( ( 𝐶 +o 𝑧 ) ∈ 𝐷 → ( 𝐶 +o 𝑧 ) ⊆ 𝐷 ) ) |
| 95 |
91 92 94
|
3syld |
⊢ ( 𝜑 → ( 𝑧 ∈ ∩ 𝑆 → ( 𝐶 +o 𝑧 ) ⊆ 𝐷 ) ) |
| 96 |
95
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ∩ 𝑆 ( 𝐶 +o 𝑧 ) ⊆ 𝐷 ) |
| 97 |
|
iunss |
⊢ ( ∪ 𝑧 ∈ ∩ 𝑆 ( 𝐶 +o 𝑧 ) ⊆ 𝐷 ↔ ∀ 𝑧 ∈ ∩ 𝑆 ( 𝐶 +o 𝑧 ) ⊆ 𝐷 ) |
| 98 |
96 97
|
sylibr |
⊢ ( 𝜑 → ∪ 𝑧 ∈ ∩ 𝑆 ( 𝐶 +o 𝑧 ) ⊆ 𝐷 ) |
| 99 |
98
|
adantr |
⊢ ( ( 𝜑 ∧ ( ∩ 𝑆 ∈ V ∧ Lim ∩ 𝑆 ) ) → ∪ 𝑧 ∈ ∩ 𝑆 ( 𝐶 +o 𝑧 ) ⊆ 𝐷 ) |
| 100 |
87 99
|
eqsstrd |
⊢ ( ( 𝜑 ∧ ( ∩ 𝑆 ∈ V ∧ Lim ∩ 𝑆 ) ) → ( 𝐶 +o ∩ 𝑆 ) ⊆ 𝐷 ) |
| 101 |
100
|
ex |
⊢ ( 𝜑 → ( ( ∩ 𝑆 ∈ V ∧ Lim ∩ 𝑆 ) → ( 𝐶 +o ∩ 𝑆 ) ⊆ 𝐷 ) ) |
| 102 |
57 85 101
|
3jaod |
⊢ ( 𝜑 → ( ( ∩ 𝑆 = ∅ ∨ ∃ 𝑧 ∈ On ∩ 𝑆 = suc 𝑧 ∨ ( ∩ 𝑆 ∈ V ∧ Lim ∩ 𝑆 ) ) → ( 𝐶 +o ∩ 𝑆 ) ⊆ 𝐷 ) ) |
| 103 |
48 102
|
mpd |
⊢ ( 𝜑 → ( 𝐶 +o ∩ 𝑆 ) ⊆ 𝐷 ) |
| 104 |
10
|
rspcev |
⊢ ( ( 𝐷 ∈ On ∧ 𝐷 ⊆ ( 𝐶 +o 𝐷 ) ) → ∃ 𝑦 ∈ On 𝐷 ⊆ ( 𝐶 +o 𝑦 ) ) |
| 105 |
4 14 104
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑦 ∈ On 𝐷 ⊆ ( 𝐶 +o 𝑦 ) ) |
| 106 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐷 |
| 107 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐶 |
| 108 |
|
nfcv |
⊢ Ⅎ 𝑦 +o |
| 109 |
|
nfrab1 |
⊢ Ⅎ 𝑦 { 𝑦 ∈ On ∣ 𝐷 ⊆ ( 𝐶 +o 𝑦 ) } |
| 110 |
109
|
nfint |
⊢ Ⅎ 𝑦 ∩ { 𝑦 ∈ On ∣ 𝐷 ⊆ ( 𝐶 +o 𝑦 ) } |
| 111 |
107 108 110
|
nfov |
⊢ Ⅎ 𝑦 ( 𝐶 +o ∩ { 𝑦 ∈ On ∣ 𝐷 ⊆ ( 𝐶 +o 𝑦 ) } ) |
| 112 |
106 111
|
nfss |
⊢ Ⅎ 𝑦 𝐷 ⊆ ( 𝐶 +o ∩ { 𝑦 ∈ On ∣ 𝐷 ⊆ ( 𝐶 +o 𝑦 ) } ) |
| 113 |
|
oveq2 |
⊢ ( 𝑦 = ∩ { 𝑦 ∈ On ∣ 𝐷 ⊆ ( 𝐶 +o 𝑦 ) } → ( 𝐶 +o 𝑦 ) = ( 𝐶 +o ∩ { 𝑦 ∈ On ∣ 𝐷 ⊆ ( 𝐶 +o 𝑦 ) } ) ) |
| 114 |
113
|
sseq2d |
⊢ ( 𝑦 = ∩ { 𝑦 ∈ On ∣ 𝐷 ⊆ ( 𝐶 +o 𝑦 ) } → ( 𝐷 ⊆ ( 𝐶 +o 𝑦 ) ↔ 𝐷 ⊆ ( 𝐶 +o ∩ { 𝑦 ∈ On ∣ 𝐷 ⊆ ( 𝐶 +o 𝑦 ) } ) ) ) |
| 115 |
112 114
|
onminsb |
⊢ ( ∃ 𝑦 ∈ On 𝐷 ⊆ ( 𝐶 +o 𝑦 ) → 𝐷 ⊆ ( 𝐶 +o ∩ { 𝑦 ∈ On ∣ 𝐷 ⊆ ( 𝐶 +o 𝑦 ) } ) ) |
| 116 |
105 115
|
syl |
⊢ ( 𝜑 → 𝐷 ⊆ ( 𝐶 +o ∩ { 𝑦 ∈ On ∣ 𝐷 ⊆ ( 𝐶 +o 𝑦 ) } ) ) |
| 117 |
43
|
oveq2i |
⊢ ( 𝐶 +o ∩ 𝑆 ) = ( 𝐶 +o ∩ { 𝑦 ∈ On ∣ 𝐷 ⊆ ( 𝐶 +o 𝑦 ) } ) |
| 118 |
116 117
|
sseqtrrdi |
⊢ ( 𝜑 → 𝐷 ⊆ ( 𝐶 +o ∩ 𝑆 ) ) |
| 119 |
103 118
|
eqssd |
⊢ ( 𝜑 → ( 𝐶 +o ∩ 𝑆 ) = 𝐷 ) |
| 120 |
|
omelon |
⊢ ω ∈ On |
| 121 |
|
omcl |
⊢ ( ( ω ∈ On ∧ 𝐷 ∈ On ) → ( ω ·o 𝐷 ) ∈ On ) |
| 122 |
120 4 121
|
sylancr |
⊢ ( 𝜑 → ( ω ·o 𝐷 ) ∈ On ) |
| 123 |
120
|
a1i |
⊢ ( 𝜑 → ω ∈ On ) |
| 124 |
6 5
|
jca |
⊢ ( 𝜑 → ( 𝑁 ∈ 𝑀 ∧ 𝑀 ∈ ω ) ) |
| 125 |
|
ontr1 |
⊢ ( ω ∈ On → ( ( 𝑁 ∈ 𝑀 ∧ 𝑀 ∈ ω ) → 𝑁 ∈ ω ) ) |
| 126 |
123 124 125
|
sylc |
⊢ ( 𝜑 → 𝑁 ∈ ω ) |
| 127 |
|
nnon |
⊢ ( 𝑁 ∈ ω → 𝑁 ∈ On ) |
| 128 |
126 127
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ On ) |
| 129 |
|
oaword1 |
⊢ ( ( ( ω ·o 𝐷 ) ∈ On ∧ 𝑁 ∈ On ) → ( ω ·o 𝐷 ) ⊆ ( ( ω ·o 𝐷 ) +o 𝑁 ) ) |
| 130 |
122 128 129
|
syl2anc |
⊢ ( 𝜑 → ( ω ·o 𝐷 ) ⊆ ( ( ω ·o 𝐷 ) +o 𝑁 ) ) |
| 131 |
1
|
oveq1d |
⊢ ( 𝜑 → ( 𝐴 +o ( ω ·o ∩ 𝑆 ) ) = ( ( ( ω ·o 𝐶 ) +o 𝑀 ) +o ( ω ·o ∩ 𝑆 ) ) ) |
| 132 |
|
omcl |
⊢ ( ( ω ∈ On ∧ 𝐶 ∈ On ) → ( ω ·o 𝐶 ) ∈ On ) |
| 133 |
120 12 132
|
sylancr |
⊢ ( 𝜑 → ( ω ·o 𝐶 ) ∈ On ) |
| 134 |
|
nnon |
⊢ ( 𝑀 ∈ ω → 𝑀 ∈ On ) |
| 135 |
5 134
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ On ) |
| 136 |
|
omcl |
⊢ ( ( ω ∈ On ∧ ∩ 𝑆 ∈ On ) → ( ω ·o ∩ 𝑆 ) ∈ On ) |
| 137 |
120 19 136
|
sylancr |
⊢ ( 𝜑 → ( ω ·o ∩ 𝑆 ) ∈ On ) |
| 138 |
|
oaass |
⊢ ( ( ( ω ·o 𝐶 ) ∈ On ∧ 𝑀 ∈ On ∧ ( ω ·o ∩ 𝑆 ) ∈ On ) → ( ( ( ω ·o 𝐶 ) +o 𝑀 ) +o ( ω ·o ∩ 𝑆 ) ) = ( ( ω ·o 𝐶 ) +o ( 𝑀 +o ( ω ·o ∩ 𝑆 ) ) ) ) |
| 139 |
133 135 137 138
|
syl3anc |
⊢ ( 𝜑 → ( ( ( ω ·o 𝐶 ) +o 𝑀 ) +o ( ω ·o ∩ 𝑆 ) ) = ( ( ω ·o 𝐶 ) +o ( 𝑀 +o ( ω ·o ∩ 𝑆 ) ) ) ) |
| 140 |
19 120
|
jctil |
⊢ ( 𝜑 → ( ω ∈ On ∧ ∩ 𝑆 ∈ On ) ) |
| 141 |
|
omword1 |
⊢ ( ( ( ω ∈ On ∧ ∩ 𝑆 ∈ On ) ∧ ∅ ∈ ∩ 𝑆 ) → ω ⊆ ( ω ·o ∩ 𝑆 ) ) |
| 142 |
140 44 141
|
syl2anc |
⊢ ( 𝜑 → ω ⊆ ( ω ·o ∩ 𝑆 ) ) |
| 143 |
|
oaabs |
⊢ ( ( ( 𝑀 ∈ ω ∧ ( ω ·o ∩ 𝑆 ) ∈ On ) ∧ ω ⊆ ( ω ·o ∩ 𝑆 ) ) → ( 𝑀 +o ( ω ·o ∩ 𝑆 ) ) = ( ω ·o ∩ 𝑆 ) ) |
| 144 |
5 137 142 143
|
syl21anc |
⊢ ( 𝜑 → ( 𝑀 +o ( ω ·o ∩ 𝑆 ) ) = ( ω ·o ∩ 𝑆 ) ) |
| 145 |
144
|
oveq2d |
⊢ ( 𝜑 → ( ( ω ·o 𝐶 ) +o ( 𝑀 +o ( ω ·o ∩ 𝑆 ) ) ) = ( ( ω ·o 𝐶 ) +o ( ω ·o ∩ 𝑆 ) ) ) |
| 146 |
|
odi |
⊢ ( ( ω ∈ On ∧ 𝐶 ∈ On ∧ ∩ 𝑆 ∈ On ) → ( ω ·o ( 𝐶 +o ∩ 𝑆 ) ) = ( ( ω ·o 𝐶 ) +o ( ω ·o ∩ 𝑆 ) ) ) |
| 147 |
123 12 19 146
|
syl3anc |
⊢ ( 𝜑 → ( ω ·o ( 𝐶 +o ∩ 𝑆 ) ) = ( ( ω ·o 𝐶 ) +o ( ω ·o ∩ 𝑆 ) ) ) |
| 148 |
119
|
oveq2d |
⊢ ( 𝜑 → ( ω ·o ( 𝐶 +o ∩ 𝑆 ) ) = ( ω ·o 𝐷 ) ) |
| 149 |
145 147 148
|
3eqtr2d |
⊢ ( 𝜑 → ( ( ω ·o 𝐶 ) +o ( 𝑀 +o ( ω ·o ∩ 𝑆 ) ) ) = ( ω ·o 𝐷 ) ) |
| 150 |
131 139 149
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐴 +o ( ω ·o ∩ 𝑆 ) ) = ( ω ·o 𝐷 ) ) |
| 151 |
130 150 2
|
3sstr4d |
⊢ ( 𝜑 → ( 𝐴 +o ( ω ·o ∩ 𝑆 ) ) ⊆ 𝐵 ) |
| 152 |
|
naddcl |
⊢ ( ( ( ω ·o 𝐶 ) ∈ On ∧ ( ω ·o ∩ 𝑆 ) ∈ On ) → ( ( ω ·o 𝐶 ) +no ( ω ·o ∩ 𝑆 ) ) ∈ On ) |
| 153 |
133 137 152
|
syl2anc |
⊢ ( 𝜑 → ( ( ω ·o 𝐶 ) +no ( ω ·o ∩ 𝑆 ) ) ∈ On ) |
| 154 |
122 153 135
|
3jca |
⊢ ( 𝜑 → ( ( ω ·o 𝐷 ) ∈ On ∧ ( ( ω ·o 𝐶 ) +no ( ω ·o ∩ 𝑆 ) ) ∈ On ∧ 𝑀 ∈ On ) ) |
| 155 |
148 147
|
eqtr3d |
⊢ ( 𝜑 → ( ω ·o 𝐷 ) = ( ( ω ·o 𝐶 ) +o ( ω ·o ∩ 𝑆 ) ) ) |
| 156 |
|
naddgeoa |
⊢ ( ( ( ω ·o 𝐶 ) ∈ On ∧ ( ω ·o ∩ 𝑆 ) ∈ On ) → ( ( ω ·o 𝐶 ) +o ( ω ·o ∩ 𝑆 ) ) ⊆ ( ( ω ·o 𝐶 ) +no ( ω ·o ∩ 𝑆 ) ) ) |
| 157 |
133 137 156
|
syl2anc |
⊢ ( 𝜑 → ( ( ω ·o 𝐶 ) +o ( ω ·o ∩ 𝑆 ) ) ⊆ ( ( ω ·o 𝐶 ) +no ( ω ·o ∩ 𝑆 ) ) ) |
| 158 |
155 157
|
eqsstrd |
⊢ ( 𝜑 → ( ω ·o 𝐷 ) ⊆ ( ( ω ·o 𝐶 ) +no ( ω ·o ∩ 𝑆 ) ) ) |
| 159 |
|
oawordri |
⊢ ( ( ( ω ·o 𝐷 ) ∈ On ∧ ( ( ω ·o 𝐶 ) +no ( ω ·o ∩ 𝑆 ) ) ∈ On ∧ 𝑀 ∈ On ) → ( ( ω ·o 𝐷 ) ⊆ ( ( ω ·o 𝐶 ) +no ( ω ·o ∩ 𝑆 ) ) → ( ( ω ·o 𝐷 ) +o 𝑀 ) ⊆ ( ( ( ω ·o 𝐶 ) +no ( ω ·o ∩ 𝑆 ) ) +o 𝑀 ) ) ) |
| 160 |
154 158 159
|
sylc |
⊢ ( 𝜑 → ( ( ω ·o 𝐷 ) +o 𝑀 ) ⊆ ( ( ( ω ·o 𝐶 ) +no ( ω ·o ∩ 𝑆 ) ) +o 𝑀 ) ) |
| 161 |
|
naddonnn |
⊢ ( ( ( ω ·o 𝐶 ) ∈ On ∧ 𝑀 ∈ ω ) → ( ( ω ·o 𝐶 ) +o 𝑀 ) = ( ( ω ·o 𝐶 ) +no 𝑀 ) ) |
| 162 |
133 5 161
|
syl2anc |
⊢ ( 𝜑 → ( ( ω ·o 𝐶 ) +o 𝑀 ) = ( ( ω ·o 𝐶 ) +no 𝑀 ) ) |
| 163 |
1 162
|
eqtrd |
⊢ ( 𝜑 → 𝐴 = ( ( ω ·o 𝐶 ) +no 𝑀 ) ) |
| 164 |
163
|
oveq1d |
⊢ ( 𝜑 → ( 𝐴 +no ( ω ·o ∩ 𝑆 ) ) = ( ( ( ω ·o 𝐶 ) +no 𝑀 ) +no ( ω ·o ∩ 𝑆 ) ) ) |
| 165 |
|
naddass |
⊢ ( ( ( ω ·o 𝐶 ) ∈ On ∧ 𝑀 ∈ On ∧ ( ω ·o ∩ 𝑆 ) ∈ On ) → ( ( ( ω ·o 𝐶 ) +no 𝑀 ) +no ( ω ·o ∩ 𝑆 ) ) = ( ( ω ·o 𝐶 ) +no ( 𝑀 +no ( ω ·o ∩ 𝑆 ) ) ) ) |
| 166 |
133 135 137 165
|
syl3anc |
⊢ ( 𝜑 → ( ( ( ω ·o 𝐶 ) +no 𝑀 ) +no ( ω ·o ∩ 𝑆 ) ) = ( ( ω ·o 𝐶 ) +no ( 𝑀 +no ( ω ·o ∩ 𝑆 ) ) ) ) |
| 167 |
|
naddcom |
⊢ ( ( 𝑀 ∈ On ∧ ( ω ·o ∩ 𝑆 ) ∈ On ) → ( 𝑀 +no ( ω ·o ∩ 𝑆 ) ) = ( ( ω ·o ∩ 𝑆 ) +no 𝑀 ) ) |
| 168 |
135 137 167
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 +no ( ω ·o ∩ 𝑆 ) ) = ( ( ω ·o ∩ 𝑆 ) +no 𝑀 ) ) |
| 169 |
168
|
oveq2d |
⊢ ( 𝜑 → ( ( ω ·o 𝐶 ) +no ( 𝑀 +no ( ω ·o ∩ 𝑆 ) ) ) = ( ( ω ·o 𝐶 ) +no ( ( ω ·o ∩ 𝑆 ) +no 𝑀 ) ) ) |
| 170 |
|
naddonnn |
⊢ ( ( ( ( ω ·o 𝐶 ) +no ( ω ·o ∩ 𝑆 ) ) ∈ On ∧ 𝑀 ∈ ω ) → ( ( ( ω ·o 𝐶 ) +no ( ω ·o ∩ 𝑆 ) ) +o 𝑀 ) = ( ( ( ω ·o 𝐶 ) +no ( ω ·o ∩ 𝑆 ) ) +no 𝑀 ) ) |
| 171 |
153 5 170
|
syl2anc |
⊢ ( 𝜑 → ( ( ( ω ·o 𝐶 ) +no ( ω ·o ∩ 𝑆 ) ) +o 𝑀 ) = ( ( ( ω ·o 𝐶 ) +no ( ω ·o ∩ 𝑆 ) ) +no 𝑀 ) ) |
| 172 |
|
naddass |
⊢ ( ( ( ω ·o 𝐶 ) ∈ On ∧ ( ω ·o ∩ 𝑆 ) ∈ On ∧ 𝑀 ∈ On ) → ( ( ( ω ·o 𝐶 ) +no ( ω ·o ∩ 𝑆 ) ) +no 𝑀 ) = ( ( ω ·o 𝐶 ) +no ( ( ω ·o ∩ 𝑆 ) +no 𝑀 ) ) ) |
| 173 |
133 137 135 172
|
syl3anc |
⊢ ( 𝜑 → ( ( ( ω ·o 𝐶 ) +no ( ω ·o ∩ 𝑆 ) ) +no 𝑀 ) = ( ( ω ·o 𝐶 ) +no ( ( ω ·o ∩ 𝑆 ) +no 𝑀 ) ) ) |
| 174 |
171 173
|
eqtr2d |
⊢ ( 𝜑 → ( ( ω ·o 𝐶 ) +no ( ( ω ·o ∩ 𝑆 ) +no 𝑀 ) ) = ( ( ( ω ·o 𝐶 ) +no ( ω ·o ∩ 𝑆 ) ) +o 𝑀 ) ) |
| 175 |
166 169 174
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( ω ·o 𝐶 ) +no 𝑀 ) +no ( ω ·o ∩ 𝑆 ) ) = ( ( ( ω ·o 𝐶 ) +no ( ω ·o ∩ 𝑆 ) ) +o 𝑀 ) ) |
| 176 |
164 175
|
eqtr2d |
⊢ ( 𝜑 → ( ( ( ω ·o 𝐶 ) +no ( ω ·o ∩ 𝑆 ) ) +o 𝑀 ) = ( 𝐴 +no ( ω ·o ∩ 𝑆 ) ) ) |
| 177 |
160 176
|
sseqtrd |
⊢ ( 𝜑 → ( ( ω ·o 𝐷 ) +o 𝑀 ) ⊆ ( 𝐴 +no ( ω ·o ∩ 𝑆 ) ) ) |
| 178 |
135 122
|
jca |
⊢ ( 𝜑 → ( 𝑀 ∈ On ∧ ( ω ·o 𝐷 ) ∈ On ) ) |
| 179 |
|
oaordi |
⊢ ( ( 𝑀 ∈ On ∧ ( ω ·o 𝐷 ) ∈ On ) → ( 𝑁 ∈ 𝑀 → ( ( ω ·o 𝐷 ) +o 𝑁 ) ∈ ( ( ω ·o 𝐷 ) +o 𝑀 ) ) ) |
| 180 |
178 6 179
|
sylc |
⊢ ( 𝜑 → ( ( ω ·o 𝐷 ) +o 𝑁 ) ∈ ( ( ω ·o 𝐷 ) +o 𝑀 ) ) |
| 181 |
2 180
|
eqeltrd |
⊢ ( 𝜑 → 𝐵 ∈ ( ( ω ·o 𝐷 ) +o 𝑀 ) ) |
| 182 |
177 181
|
sseldd |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 +no ( ω ·o ∩ 𝑆 ) ) ) |
| 183 |
119 151 182
|
3jca |
⊢ ( 𝜑 → ( ( 𝐶 +o ∩ 𝑆 ) = 𝐷 ∧ ( 𝐴 +o ( ω ·o ∩ 𝑆 ) ) ⊆ 𝐵 ∧ 𝐵 ∈ ( 𝐴 +no ( ω ·o ∩ 𝑆 ) ) ) ) |
| 184 |
|
oveq2 |
⊢ ( 𝑥 = ∩ 𝑆 → ( 𝐶 +o 𝑥 ) = ( 𝐶 +o ∩ 𝑆 ) ) |
| 185 |
184
|
eqeq1d |
⊢ ( 𝑥 = ∩ 𝑆 → ( ( 𝐶 +o 𝑥 ) = 𝐷 ↔ ( 𝐶 +o ∩ 𝑆 ) = 𝐷 ) ) |
| 186 |
|
oveq2 |
⊢ ( 𝑥 = ∩ 𝑆 → ( ω ·o 𝑥 ) = ( ω ·o ∩ 𝑆 ) ) |
| 187 |
186
|
oveq2d |
⊢ ( 𝑥 = ∩ 𝑆 → ( 𝐴 +o ( ω ·o 𝑥 ) ) = ( 𝐴 +o ( ω ·o ∩ 𝑆 ) ) ) |
| 188 |
187
|
sseq1d |
⊢ ( 𝑥 = ∩ 𝑆 → ( ( 𝐴 +o ( ω ·o 𝑥 ) ) ⊆ 𝐵 ↔ ( 𝐴 +o ( ω ·o ∩ 𝑆 ) ) ⊆ 𝐵 ) ) |
| 189 |
186
|
oveq2d |
⊢ ( 𝑥 = ∩ 𝑆 → ( 𝐴 +no ( ω ·o 𝑥 ) ) = ( 𝐴 +no ( ω ·o ∩ 𝑆 ) ) ) |
| 190 |
189
|
eleq2d |
⊢ ( 𝑥 = ∩ 𝑆 → ( 𝐵 ∈ ( 𝐴 +no ( ω ·o 𝑥 ) ) ↔ 𝐵 ∈ ( 𝐴 +no ( ω ·o ∩ 𝑆 ) ) ) ) |
| 191 |
185 188 190
|
3anbi123d |
⊢ ( 𝑥 = ∩ 𝑆 → ( ( ( 𝐶 +o 𝑥 ) = 𝐷 ∧ ( 𝐴 +o ( ω ·o 𝑥 ) ) ⊆ 𝐵 ∧ 𝐵 ∈ ( 𝐴 +no ( ω ·o 𝑥 ) ) ) ↔ ( ( 𝐶 +o ∩ 𝑆 ) = 𝐷 ∧ ( 𝐴 +o ( ω ·o ∩ 𝑆 ) ) ⊆ 𝐵 ∧ 𝐵 ∈ ( 𝐴 +no ( ω ·o ∩ 𝑆 ) ) ) ) ) |
| 192 |
191
|
rspcev |
⊢ ( ( ∩ 𝑆 ∈ ( On ∖ 1o ) ∧ ( ( 𝐶 +o ∩ 𝑆 ) = 𝐷 ∧ ( 𝐴 +o ( ω ·o ∩ 𝑆 ) ) ⊆ 𝐵 ∧ 𝐵 ∈ ( 𝐴 +no ( ω ·o ∩ 𝑆 ) ) ) ) → ∃ 𝑥 ∈ ( On ∖ 1o ) ( ( 𝐶 +o 𝑥 ) = 𝐷 ∧ ( 𝐴 +o ( ω ·o 𝑥 ) ) ⊆ 𝐵 ∧ 𝐵 ∈ ( 𝐴 +no ( ω ·o 𝑥 ) ) ) ) |
| 193 |
46 183 192
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ( On ∖ 1o ) ( ( 𝐶 +o 𝑥 ) = 𝐷 ∧ ( 𝐴 +o ( ω ·o 𝑥 ) ) ⊆ 𝐵 ∧ 𝐵 ∈ ( 𝐴 +no ( ω ·o 𝑥 ) ) ) ) |