Metamath Proof Explorer


Theorem naddwordnexlem4

Description: When A is the sum of a limit ordinal (or zero) and a natural number and B is the sum of a larger limit ordinal and a smaller natural number, there exists a product with omega such that the ordinal sum with A is less than or equal to B while the natural sum is larger than B . (Contributed by RP, 15-Feb-2025)

Ref Expression
Hypotheses naddwordnex.a ( 𝜑𝐴 = ( ( ω ·o 𝐶 ) +o 𝑀 ) )
naddwordnex.b ( 𝜑𝐵 = ( ( ω ·o 𝐷 ) +o 𝑁 ) )
naddwordnex.c ( 𝜑𝐶𝐷 )
naddwordnex.d ( 𝜑𝐷 ∈ On )
naddwordnex.m ( 𝜑𝑀 ∈ ω )
naddwordnex.n ( 𝜑𝑁𝑀 )
naddwordnexlem4.s 𝑆 = { 𝑦 ∈ On ∣ 𝐷 ⊆ ( 𝐶 +o 𝑦 ) }
Assertion naddwordnexlem4 ( 𝜑 → ∃ 𝑥 ∈ ( On ∖ 1o ) ( ( 𝐶 +o 𝑥 ) = 𝐷 ∧ ( 𝐴 +o ( ω ·o 𝑥 ) ) ⊆ 𝐵𝐵 ∈ ( 𝐴 +no ( ω ·o 𝑥 ) ) ) )

Proof

Step Hyp Ref Expression
1 naddwordnex.a ( 𝜑𝐴 = ( ( ω ·o 𝐶 ) +o 𝑀 ) )
2 naddwordnex.b ( 𝜑𝐵 = ( ( ω ·o 𝐷 ) +o 𝑁 ) )
3 naddwordnex.c ( 𝜑𝐶𝐷 )
4 naddwordnex.d ( 𝜑𝐷 ∈ On )
5 naddwordnex.m ( 𝜑𝑀 ∈ ω )
6 naddwordnex.n ( 𝜑𝑁𝑀 )
7 naddwordnexlem4.s 𝑆 = { 𝑦 ∈ On ∣ 𝐷 ⊆ ( 𝐶 +o 𝑦 ) }
8 7 ssrab3 𝑆 ⊆ On
9 oveq2 ( 𝑦 = 𝐷 → ( 𝐶 +o 𝑦 ) = ( 𝐶 +o 𝐷 ) )
10 9 sseq2d ( 𝑦 = 𝐷 → ( 𝐷 ⊆ ( 𝐶 +o 𝑦 ) ↔ 𝐷 ⊆ ( 𝐶 +o 𝐷 ) ) )
11 onelon ( ( 𝐷 ∈ On ∧ 𝐶𝐷 ) → 𝐶 ∈ On )
12 4 3 11 syl2anc ( 𝜑𝐶 ∈ On )
13 oaword2 ( ( 𝐷 ∈ On ∧ 𝐶 ∈ On ) → 𝐷 ⊆ ( 𝐶 +o 𝐷 ) )
14 4 12 13 syl2anc ( 𝜑𝐷 ⊆ ( 𝐶 +o 𝐷 ) )
15 10 4 14 elrabd ( 𝜑𝐷 ∈ { 𝑦 ∈ On ∣ 𝐷 ⊆ ( 𝐶 +o 𝑦 ) } )
16 15 7 eleqtrrdi ( 𝜑𝐷𝑆 )
17 16 ne0d ( 𝜑𝑆 ≠ ∅ )
18 oninton ( ( 𝑆 ⊆ On ∧ 𝑆 ≠ ∅ ) → 𝑆 ∈ On )
19 8 17 18 sylancr ( 𝜑 𝑆 ∈ On )
20 oveq2 ( 𝑦 = ∅ → ( 𝐶 +o 𝑦 ) = ( 𝐶 +o ∅ ) )
21 oa0 ( 𝐶 ∈ On → ( 𝐶 +o ∅ ) = 𝐶 )
22 12 21 syl ( 𝜑 → ( 𝐶 +o ∅ ) = 𝐶 )
23 20 22 sylan9eqr ( ( 𝜑𝑦 = ∅ ) → ( 𝐶 +o 𝑦 ) = 𝐶 )
24 3 adantr ( ( 𝜑𝑦 = ∅ ) → 𝐶𝐷 )
25 23 24 eqeltrd ( ( 𝜑𝑦 = ∅ ) → ( 𝐶 +o 𝑦 ) ∈ 𝐷 )
26 25 ex ( 𝜑 → ( 𝑦 = ∅ → ( 𝐶 +o 𝑦 ) ∈ 𝐷 ) )
27 26 adantr ( ( 𝜑𝑦 ∈ On ) → ( 𝑦 = ∅ → ( 𝐶 +o 𝑦 ) ∈ 𝐷 ) )
28 27 con3d ( ( 𝜑𝑦 ∈ On ) → ( ¬ ( 𝐶 +o 𝑦 ) ∈ 𝐷 → ¬ 𝑦 = ∅ ) )
29 oacl ( ( 𝐶 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐶 +o 𝑦 ) ∈ On )
30 12 29 sylan ( ( 𝜑𝑦 ∈ On ) → ( 𝐶 +o 𝑦 ) ∈ On )
31 ontri1 ( ( 𝐷 ∈ On ∧ ( 𝐶 +o 𝑦 ) ∈ On ) → ( 𝐷 ⊆ ( 𝐶 +o 𝑦 ) ↔ ¬ ( 𝐶 +o 𝑦 ) ∈ 𝐷 ) )
32 4 30 31 syl2an2r ( ( 𝜑𝑦 ∈ On ) → ( 𝐷 ⊆ ( 𝐶 +o 𝑦 ) ↔ ¬ ( 𝐶 +o 𝑦 ) ∈ 𝐷 ) )
33 on0eln0 ( 𝑦 ∈ On → ( ∅ ∈ 𝑦𝑦 ≠ ∅ ) )
34 df-ne ( 𝑦 ≠ ∅ ↔ ¬ 𝑦 = ∅ )
35 33 34 bitrdi ( 𝑦 ∈ On → ( ∅ ∈ 𝑦 ↔ ¬ 𝑦 = ∅ ) )
36 35 adantl ( ( 𝜑𝑦 ∈ On ) → ( ∅ ∈ 𝑦 ↔ ¬ 𝑦 = ∅ ) )
37 28 32 36 3imtr4d ( ( 𝜑𝑦 ∈ On ) → ( 𝐷 ⊆ ( 𝐶 +o 𝑦 ) → ∅ ∈ 𝑦 ) )
38 37 ex ( 𝜑 → ( 𝑦 ∈ On → ( 𝐷 ⊆ ( 𝐶 +o 𝑦 ) → ∅ ∈ 𝑦 ) ) )
39 38 ralrimiv ( 𝜑 → ∀ 𝑦 ∈ On ( 𝐷 ⊆ ( 𝐶 +o 𝑦 ) → ∅ ∈ 𝑦 ) )
40 0ex ∅ ∈ V
41 40 elintrab ( ∅ ∈ { 𝑦 ∈ On ∣ 𝐷 ⊆ ( 𝐶 +o 𝑦 ) } ↔ ∀ 𝑦 ∈ On ( 𝐷 ⊆ ( 𝐶 +o 𝑦 ) → ∅ ∈ 𝑦 ) )
42 39 41 sylibr ( 𝜑 → ∅ ∈ { 𝑦 ∈ On ∣ 𝐷 ⊆ ( 𝐶 +o 𝑦 ) } )
43 7 inteqi 𝑆 = { 𝑦 ∈ On ∣ 𝐷 ⊆ ( 𝐶 +o 𝑦 ) }
44 42 43 eleqtrrdi ( 𝜑 → ∅ ∈ 𝑆 )
45 ondif1 ( 𝑆 ∈ ( On ∖ 1o ) ↔ ( 𝑆 ∈ On ∧ ∅ ∈ 𝑆 ) )
46 19 44 45 sylanbrc ( 𝜑 𝑆 ∈ ( On ∖ 1o ) )
47 onzsl ( 𝑆 ∈ On ↔ ( 𝑆 = ∅ ∨ ∃ 𝑧 ∈ On 𝑆 = suc 𝑧 ∨ ( 𝑆 ∈ V ∧ Lim 𝑆 ) ) )
48 19 47 sylib ( 𝜑 → ( 𝑆 = ∅ ∨ ∃ 𝑧 ∈ On 𝑆 = suc 𝑧 ∨ ( 𝑆 ∈ V ∧ Lim 𝑆 ) ) )
49 oveq2 ( 𝑆 = ∅ → ( 𝐶 +o 𝑆 ) = ( 𝐶 +o ∅ ) )
50 49 22 sylan9eqr ( ( 𝜑 𝑆 = ∅ ) → ( 𝐶 +o 𝑆 ) = 𝐶 )
51 onelpss ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) → ( 𝐶𝐷 ↔ ( 𝐶𝐷𝐶𝐷 ) ) )
52 12 4 51 syl2anc ( 𝜑 → ( 𝐶𝐷 ↔ ( 𝐶𝐷𝐶𝐷 ) ) )
53 3 52 mpbid ( 𝜑 → ( 𝐶𝐷𝐶𝐷 ) )
54 53 simpld ( 𝜑𝐶𝐷 )
55 54 adantr ( ( 𝜑 𝑆 = ∅ ) → 𝐶𝐷 )
56 50 55 eqsstrd ( ( 𝜑 𝑆 = ∅ ) → ( 𝐶 +o 𝑆 ) ⊆ 𝐷 )
57 56 ex ( 𝜑 → ( 𝑆 = ∅ → ( 𝐶 +o 𝑆 ) ⊆ 𝐷 ) )
58 oveq2 ( 𝑆 = suc 𝑧 → ( 𝐶 +o 𝑆 ) = ( 𝐶 +o suc 𝑧 ) )
59 oasuc ( ( 𝐶 ∈ On ∧ 𝑧 ∈ On ) → ( 𝐶 +o suc 𝑧 ) = suc ( 𝐶 +o 𝑧 ) )
60 12 59 sylan ( ( 𝜑𝑧 ∈ On ) → ( 𝐶 +o suc 𝑧 ) = suc ( 𝐶 +o 𝑧 ) )
61 58 60 sylan9eqr ( ( ( 𝜑𝑧 ∈ On ) ∧ 𝑆 = suc 𝑧 ) → ( 𝐶 +o 𝑆 ) = suc ( 𝐶 +o 𝑧 ) )
62 vex 𝑧 ∈ V
63 62 sucid 𝑧 ∈ suc 𝑧
64 eleq2 ( 𝑆 = suc 𝑧 → ( 𝑧 𝑆𝑧 ∈ suc 𝑧 ) )
65 63 64 mpbiri ( 𝑆 = suc 𝑧𝑧 𝑆 )
66 65 a1i ( ( 𝜑𝑧 ∈ On ) → ( 𝑆 = suc 𝑧𝑧 𝑆 ) )
67 43 eleq2i ( 𝑧 𝑆𝑧 { 𝑦 ∈ On ∣ 𝐷 ⊆ ( 𝐶 +o 𝑦 ) } )
68 oveq2 ( 𝑦 = 𝑧 → ( 𝐶 +o 𝑦 ) = ( 𝐶 +o 𝑧 ) )
69 68 sseq2d ( 𝑦 = 𝑧 → ( 𝐷 ⊆ ( 𝐶 +o 𝑦 ) ↔ 𝐷 ⊆ ( 𝐶 +o 𝑧 ) ) )
70 69 onnminsb ( 𝑧 ∈ On → ( 𝑧 { 𝑦 ∈ On ∣ 𝐷 ⊆ ( 𝐶 +o 𝑦 ) } → ¬ 𝐷 ⊆ ( 𝐶 +o 𝑧 ) ) )
71 70 adantl ( ( 𝜑𝑧 ∈ On ) → ( 𝑧 { 𝑦 ∈ On ∣ 𝐷 ⊆ ( 𝐶 +o 𝑦 ) } → ¬ 𝐷 ⊆ ( 𝐶 +o 𝑧 ) ) )
72 67 71 biimtrid ( ( 𝜑𝑧 ∈ On ) → ( 𝑧 𝑆 → ¬ 𝐷 ⊆ ( 𝐶 +o 𝑧 ) ) )
73 oacl ( ( 𝐶 ∈ On ∧ 𝑧 ∈ On ) → ( 𝐶 +o 𝑧 ) ∈ On )
74 12 73 sylan ( ( 𝜑𝑧 ∈ On ) → ( 𝐶 +o 𝑧 ) ∈ On )
75 ontri1 ( ( 𝐷 ∈ On ∧ ( 𝐶 +o 𝑧 ) ∈ On ) → ( 𝐷 ⊆ ( 𝐶 +o 𝑧 ) ↔ ¬ ( 𝐶 +o 𝑧 ) ∈ 𝐷 ) )
76 4 74 75 syl2an2r ( ( 𝜑𝑧 ∈ On ) → ( 𝐷 ⊆ ( 𝐶 +o 𝑧 ) ↔ ¬ ( 𝐶 +o 𝑧 ) ∈ 𝐷 ) )
77 76 con2bid ( ( 𝜑𝑧 ∈ On ) → ( ( 𝐶 +o 𝑧 ) ∈ 𝐷 ↔ ¬ 𝐷 ⊆ ( 𝐶 +o 𝑧 ) ) )
78 72 77 sylibrd ( ( 𝜑𝑧 ∈ On ) → ( 𝑧 𝑆 → ( 𝐶 +o 𝑧 ) ∈ 𝐷 ) )
79 onsucss ( 𝐷 ∈ On → ( ( 𝐶 +o 𝑧 ) ∈ 𝐷 → suc ( 𝐶 +o 𝑧 ) ⊆ 𝐷 ) )
80 4 79 syl ( 𝜑 → ( ( 𝐶 +o 𝑧 ) ∈ 𝐷 → suc ( 𝐶 +o 𝑧 ) ⊆ 𝐷 ) )
81 80 adantr ( ( 𝜑𝑧 ∈ On ) → ( ( 𝐶 +o 𝑧 ) ∈ 𝐷 → suc ( 𝐶 +o 𝑧 ) ⊆ 𝐷 ) )
82 66 78 81 3syld ( ( 𝜑𝑧 ∈ On ) → ( 𝑆 = suc 𝑧 → suc ( 𝐶 +o 𝑧 ) ⊆ 𝐷 ) )
83 82 imp ( ( ( 𝜑𝑧 ∈ On ) ∧ 𝑆 = suc 𝑧 ) → suc ( 𝐶 +o 𝑧 ) ⊆ 𝐷 )
84 61 83 eqsstrd ( ( ( 𝜑𝑧 ∈ On ) ∧ 𝑆 = suc 𝑧 ) → ( 𝐶 +o 𝑆 ) ⊆ 𝐷 )
85 84 rexlimdva2 ( 𝜑 → ( ∃ 𝑧 ∈ On 𝑆 = suc 𝑧 → ( 𝐶 +o 𝑆 ) ⊆ 𝐷 ) )
86 oalim ( ( 𝐶 ∈ On ∧ ( 𝑆 ∈ V ∧ Lim 𝑆 ) ) → ( 𝐶 +o 𝑆 ) = 𝑧 𝑆 ( 𝐶 +o 𝑧 ) )
87 12 86 sylan ( ( 𝜑 ∧ ( 𝑆 ∈ V ∧ Lim 𝑆 ) ) → ( 𝐶 +o 𝑆 ) = 𝑧 𝑆 ( 𝐶 +o 𝑧 ) )
88 onelon ( ( 𝑆 ∈ On ∧ 𝑧 𝑆 ) → 𝑧 ∈ On )
89 19 88 sylan ( ( 𝜑𝑧 𝑆 ) → 𝑧 ∈ On )
90 89 ex ( 𝜑 → ( 𝑧 𝑆𝑧 ∈ On ) )
91 90 ancrd ( 𝜑 → ( 𝑧 𝑆 → ( 𝑧 ∈ On ∧ 𝑧 𝑆 ) ) )
92 78 expimpd ( 𝜑 → ( ( 𝑧 ∈ On ∧ 𝑧 𝑆 ) → ( 𝐶 +o 𝑧 ) ∈ 𝐷 ) )
93 onelss ( 𝐷 ∈ On → ( ( 𝐶 +o 𝑧 ) ∈ 𝐷 → ( 𝐶 +o 𝑧 ) ⊆ 𝐷 ) )
94 4 93 syl ( 𝜑 → ( ( 𝐶 +o 𝑧 ) ∈ 𝐷 → ( 𝐶 +o 𝑧 ) ⊆ 𝐷 ) )
95 91 92 94 3syld ( 𝜑 → ( 𝑧 𝑆 → ( 𝐶 +o 𝑧 ) ⊆ 𝐷 ) )
96 95 ralrimiv ( 𝜑 → ∀ 𝑧 𝑆 ( 𝐶 +o 𝑧 ) ⊆ 𝐷 )
97 iunss ( 𝑧 𝑆 ( 𝐶 +o 𝑧 ) ⊆ 𝐷 ↔ ∀ 𝑧 𝑆 ( 𝐶 +o 𝑧 ) ⊆ 𝐷 )
98 96 97 sylibr ( 𝜑 𝑧 𝑆 ( 𝐶 +o 𝑧 ) ⊆ 𝐷 )
99 98 adantr ( ( 𝜑 ∧ ( 𝑆 ∈ V ∧ Lim 𝑆 ) ) → 𝑧 𝑆 ( 𝐶 +o 𝑧 ) ⊆ 𝐷 )
100 87 99 eqsstrd ( ( 𝜑 ∧ ( 𝑆 ∈ V ∧ Lim 𝑆 ) ) → ( 𝐶 +o 𝑆 ) ⊆ 𝐷 )
101 100 ex ( 𝜑 → ( ( 𝑆 ∈ V ∧ Lim 𝑆 ) → ( 𝐶 +o 𝑆 ) ⊆ 𝐷 ) )
102 57 85 101 3jaod ( 𝜑 → ( ( 𝑆 = ∅ ∨ ∃ 𝑧 ∈ On 𝑆 = suc 𝑧 ∨ ( 𝑆 ∈ V ∧ Lim 𝑆 ) ) → ( 𝐶 +o 𝑆 ) ⊆ 𝐷 ) )
103 48 102 mpd ( 𝜑 → ( 𝐶 +o 𝑆 ) ⊆ 𝐷 )
104 10 rspcev ( ( 𝐷 ∈ On ∧ 𝐷 ⊆ ( 𝐶 +o 𝐷 ) ) → ∃ 𝑦 ∈ On 𝐷 ⊆ ( 𝐶 +o 𝑦 ) )
105 4 14 104 syl2anc ( 𝜑 → ∃ 𝑦 ∈ On 𝐷 ⊆ ( 𝐶 +o 𝑦 ) )
106 nfcv 𝑦 𝐷
107 nfcv 𝑦 𝐶
108 nfcv 𝑦 +o
109 nfrab1 𝑦 { 𝑦 ∈ On ∣ 𝐷 ⊆ ( 𝐶 +o 𝑦 ) }
110 109 nfint 𝑦 { 𝑦 ∈ On ∣ 𝐷 ⊆ ( 𝐶 +o 𝑦 ) }
111 107 108 110 nfov 𝑦 ( 𝐶 +o { 𝑦 ∈ On ∣ 𝐷 ⊆ ( 𝐶 +o 𝑦 ) } )
112 106 111 nfss 𝑦 𝐷 ⊆ ( 𝐶 +o { 𝑦 ∈ On ∣ 𝐷 ⊆ ( 𝐶 +o 𝑦 ) } )
113 oveq2 ( 𝑦 = { 𝑦 ∈ On ∣ 𝐷 ⊆ ( 𝐶 +o 𝑦 ) } → ( 𝐶 +o 𝑦 ) = ( 𝐶 +o { 𝑦 ∈ On ∣ 𝐷 ⊆ ( 𝐶 +o 𝑦 ) } ) )
114 113 sseq2d ( 𝑦 = { 𝑦 ∈ On ∣ 𝐷 ⊆ ( 𝐶 +o 𝑦 ) } → ( 𝐷 ⊆ ( 𝐶 +o 𝑦 ) ↔ 𝐷 ⊆ ( 𝐶 +o { 𝑦 ∈ On ∣ 𝐷 ⊆ ( 𝐶 +o 𝑦 ) } ) ) )
115 112 114 onminsb ( ∃ 𝑦 ∈ On 𝐷 ⊆ ( 𝐶 +o 𝑦 ) → 𝐷 ⊆ ( 𝐶 +o { 𝑦 ∈ On ∣ 𝐷 ⊆ ( 𝐶 +o 𝑦 ) } ) )
116 105 115 syl ( 𝜑𝐷 ⊆ ( 𝐶 +o { 𝑦 ∈ On ∣ 𝐷 ⊆ ( 𝐶 +o 𝑦 ) } ) )
117 43 oveq2i ( 𝐶 +o 𝑆 ) = ( 𝐶 +o { 𝑦 ∈ On ∣ 𝐷 ⊆ ( 𝐶 +o 𝑦 ) } )
118 116 117 sseqtrrdi ( 𝜑𝐷 ⊆ ( 𝐶 +o 𝑆 ) )
119 103 118 eqssd ( 𝜑 → ( 𝐶 +o 𝑆 ) = 𝐷 )
120 omelon ω ∈ On
121 omcl ( ( ω ∈ On ∧ 𝐷 ∈ On ) → ( ω ·o 𝐷 ) ∈ On )
122 120 4 121 sylancr ( 𝜑 → ( ω ·o 𝐷 ) ∈ On )
123 120 a1i ( 𝜑 → ω ∈ On )
124 6 5 jca ( 𝜑 → ( 𝑁𝑀𝑀 ∈ ω ) )
125 ontr1 ( ω ∈ On → ( ( 𝑁𝑀𝑀 ∈ ω ) → 𝑁 ∈ ω ) )
126 123 124 125 sylc ( 𝜑𝑁 ∈ ω )
127 nnon ( 𝑁 ∈ ω → 𝑁 ∈ On )
128 126 127 syl ( 𝜑𝑁 ∈ On )
129 oaword1 ( ( ( ω ·o 𝐷 ) ∈ On ∧ 𝑁 ∈ On ) → ( ω ·o 𝐷 ) ⊆ ( ( ω ·o 𝐷 ) +o 𝑁 ) )
130 122 128 129 syl2anc ( 𝜑 → ( ω ·o 𝐷 ) ⊆ ( ( ω ·o 𝐷 ) +o 𝑁 ) )
131 1 oveq1d ( 𝜑 → ( 𝐴 +o ( ω ·o 𝑆 ) ) = ( ( ( ω ·o 𝐶 ) +o 𝑀 ) +o ( ω ·o 𝑆 ) ) )
132 omcl ( ( ω ∈ On ∧ 𝐶 ∈ On ) → ( ω ·o 𝐶 ) ∈ On )
133 120 12 132 sylancr ( 𝜑 → ( ω ·o 𝐶 ) ∈ On )
134 nnon ( 𝑀 ∈ ω → 𝑀 ∈ On )
135 5 134 syl ( 𝜑𝑀 ∈ On )
136 omcl ( ( ω ∈ On ∧ 𝑆 ∈ On ) → ( ω ·o 𝑆 ) ∈ On )
137 120 19 136 sylancr ( 𝜑 → ( ω ·o 𝑆 ) ∈ On )
138 oaass ( ( ( ω ·o 𝐶 ) ∈ On ∧ 𝑀 ∈ On ∧ ( ω ·o 𝑆 ) ∈ On ) → ( ( ( ω ·o 𝐶 ) +o 𝑀 ) +o ( ω ·o 𝑆 ) ) = ( ( ω ·o 𝐶 ) +o ( 𝑀 +o ( ω ·o 𝑆 ) ) ) )
139 133 135 137 138 syl3anc ( 𝜑 → ( ( ( ω ·o 𝐶 ) +o 𝑀 ) +o ( ω ·o 𝑆 ) ) = ( ( ω ·o 𝐶 ) +o ( 𝑀 +o ( ω ·o 𝑆 ) ) ) )
140 19 120 jctil ( 𝜑 → ( ω ∈ On ∧ 𝑆 ∈ On ) )
141 omword1 ( ( ( ω ∈ On ∧ 𝑆 ∈ On ) ∧ ∅ ∈ 𝑆 ) → ω ⊆ ( ω ·o 𝑆 ) )
142 140 44 141 syl2anc ( 𝜑 → ω ⊆ ( ω ·o 𝑆 ) )
143 oaabs ( ( ( 𝑀 ∈ ω ∧ ( ω ·o 𝑆 ) ∈ On ) ∧ ω ⊆ ( ω ·o 𝑆 ) ) → ( 𝑀 +o ( ω ·o 𝑆 ) ) = ( ω ·o 𝑆 ) )
144 5 137 142 143 syl21anc ( 𝜑 → ( 𝑀 +o ( ω ·o 𝑆 ) ) = ( ω ·o 𝑆 ) )
145 144 oveq2d ( 𝜑 → ( ( ω ·o 𝐶 ) +o ( 𝑀 +o ( ω ·o 𝑆 ) ) ) = ( ( ω ·o 𝐶 ) +o ( ω ·o 𝑆 ) ) )
146 odi ( ( ω ∈ On ∧ 𝐶 ∈ On ∧ 𝑆 ∈ On ) → ( ω ·o ( 𝐶 +o 𝑆 ) ) = ( ( ω ·o 𝐶 ) +o ( ω ·o 𝑆 ) ) )
147 123 12 19 146 syl3anc ( 𝜑 → ( ω ·o ( 𝐶 +o 𝑆 ) ) = ( ( ω ·o 𝐶 ) +o ( ω ·o 𝑆 ) ) )
148 119 oveq2d ( 𝜑 → ( ω ·o ( 𝐶 +o 𝑆 ) ) = ( ω ·o 𝐷 ) )
149 145 147 148 3eqtr2d ( 𝜑 → ( ( ω ·o 𝐶 ) +o ( 𝑀 +o ( ω ·o 𝑆 ) ) ) = ( ω ·o 𝐷 ) )
150 131 139 149 3eqtrd ( 𝜑 → ( 𝐴 +o ( ω ·o 𝑆 ) ) = ( ω ·o 𝐷 ) )
151 130 150 2 3sstr4d ( 𝜑 → ( 𝐴 +o ( ω ·o 𝑆 ) ) ⊆ 𝐵 )
152 naddcl ( ( ( ω ·o 𝐶 ) ∈ On ∧ ( ω ·o 𝑆 ) ∈ On ) → ( ( ω ·o 𝐶 ) +no ( ω ·o 𝑆 ) ) ∈ On )
153 133 137 152 syl2anc ( 𝜑 → ( ( ω ·o 𝐶 ) +no ( ω ·o 𝑆 ) ) ∈ On )
154 122 153 135 3jca ( 𝜑 → ( ( ω ·o 𝐷 ) ∈ On ∧ ( ( ω ·o 𝐶 ) +no ( ω ·o 𝑆 ) ) ∈ On ∧ 𝑀 ∈ On ) )
155 148 147 eqtr3d ( 𝜑 → ( ω ·o 𝐷 ) = ( ( ω ·o 𝐶 ) +o ( ω ·o 𝑆 ) ) )
156 naddgeoa ( ( ( ω ·o 𝐶 ) ∈ On ∧ ( ω ·o 𝑆 ) ∈ On ) → ( ( ω ·o 𝐶 ) +o ( ω ·o 𝑆 ) ) ⊆ ( ( ω ·o 𝐶 ) +no ( ω ·o 𝑆 ) ) )
157 133 137 156 syl2anc ( 𝜑 → ( ( ω ·o 𝐶 ) +o ( ω ·o 𝑆 ) ) ⊆ ( ( ω ·o 𝐶 ) +no ( ω ·o 𝑆 ) ) )
158 155 157 eqsstrd ( 𝜑 → ( ω ·o 𝐷 ) ⊆ ( ( ω ·o 𝐶 ) +no ( ω ·o 𝑆 ) ) )
159 oawordri ( ( ( ω ·o 𝐷 ) ∈ On ∧ ( ( ω ·o 𝐶 ) +no ( ω ·o 𝑆 ) ) ∈ On ∧ 𝑀 ∈ On ) → ( ( ω ·o 𝐷 ) ⊆ ( ( ω ·o 𝐶 ) +no ( ω ·o 𝑆 ) ) → ( ( ω ·o 𝐷 ) +o 𝑀 ) ⊆ ( ( ( ω ·o 𝐶 ) +no ( ω ·o 𝑆 ) ) +o 𝑀 ) ) )
160 154 158 159 sylc ( 𝜑 → ( ( ω ·o 𝐷 ) +o 𝑀 ) ⊆ ( ( ( ω ·o 𝐶 ) +no ( ω ·o 𝑆 ) ) +o 𝑀 ) )
161 naddonnn ( ( ( ω ·o 𝐶 ) ∈ On ∧ 𝑀 ∈ ω ) → ( ( ω ·o 𝐶 ) +o 𝑀 ) = ( ( ω ·o 𝐶 ) +no 𝑀 ) )
162 133 5 161 syl2anc ( 𝜑 → ( ( ω ·o 𝐶 ) +o 𝑀 ) = ( ( ω ·o 𝐶 ) +no 𝑀 ) )
163 1 162 eqtrd ( 𝜑𝐴 = ( ( ω ·o 𝐶 ) +no 𝑀 ) )
164 163 oveq1d ( 𝜑 → ( 𝐴 +no ( ω ·o 𝑆 ) ) = ( ( ( ω ·o 𝐶 ) +no 𝑀 ) +no ( ω ·o 𝑆 ) ) )
165 naddass ( ( ( ω ·o 𝐶 ) ∈ On ∧ 𝑀 ∈ On ∧ ( ω ·o 𝑆 ) ∈ On ) → ( ( ( ω ·o 𝐶 ) +no 𝑀 ) +no ( ω ·o 𝑆 ) ) = ( ( ω ·o 𝐶 ) +no ( 𝑀 +no ( ω ·o 𝑆 ) ) ) )
166 133 135 137 165 syl3anc ( 𝜑 → ( ( ( ω ·o 𝐶 ) +no 𝑀 ) +no ( ω ·o 𝑆 ) ) = ( ( ω ·o 𝐶 ) +no ( 𝑀 +no ( ω ·o 𝑆 ) ) ) )
167 naddcom ( ( 𝑀 ∈ On ∧ ( ω ·o 𝑆 ) ∈ On ) → ( 𝑀 +no ( ω ·o 𝑆 ) ) = ( ( ω ·o 𝑆 ) +no 𝑀 ) )
168 135 137 167 syl2anc ( 𝜑 → ( 𝑀 +no ( ω ·o 𝑆 ) ) = ( ( ω ·o 𝑆 ) +no 𝑀 ) )
169 168 oveq2d ( 𝜑 → ( ( ω ·o 𝐶 ) +no ( 𝑀 +no ( ω ·o 𝑆 ) ) ) = ( ( ω ·o 𝐶 ) +no ( ( ω ·o 𝑆 ) +no 𝑀 ) ) )
170 naddonnn ( ( ( ( ω ·o 𝐶 ) +no ( ω ·o 𝑆 ) ) ∈ On ∧ 𝑀 ∈ ω ) → ( ( ( ω ·o 𝐶 ) +no ( ω ·o 𝑆 ) ) +o 𝑀 ) = ( ( ( ω ·o 𝐶 ) +no ( ω ·o 𝑆 ) ) +no 𝑀 ) )
171 153 5 170 syl2anc ( 𝜑 → ( ( ( ω ·o 𝐶 ) +no ( ω ·o 𝑆 ) ) +o 𝑀 ) = ( ( ( ω ·o 𝐶 ) +no ( ω ·o 𝑆 ) ) +no 𝑀 ) )
172 naddass ( ( ( ω ·o 𝐶 ) ∈ On ∧ ( ω ·o 𝑆 ) ∈ On ∧ 𝑀 ∈ On ) → ( ( ( ω ·o 𝐶 ) +no ( ω ·o 𝑆 ) ) +no 𝑀 ) = ( ( ω ·o 𝐶 ) +no ( ( ω ·o 𝑆 ) +no 𝑀 ) ) )
173 133 137 135 172 syl3anc ( 𝜑 → ( ( ( ω ·o 𝐶 ) +no ( ω ·o 𝑆 ) ) +no 𝑀 ) = ( ( ω ·o 𝐶 ) +no ( ( ω ·o 𝑆 ) +no 𝑀 ) ) )
174 171 173 eqtr2d ( 𝜑 → ( ( ω ·o 𝐶 ) +no ( ( ω ·o 𝑆 ) +no 𝑀 ) ) = ( ( ( ω ·o 𝐶 ) +no ( ω ·o 𝑆 ) ) +o 𝑀 ) )
175 166 169 174 3eqtrd ( 𝜑 → ( ( ( ω ·o 𝐶 ) +no 𝑀 ) +no ( ω ·o 𝑆 ) ) = ( ( ( ω ·o 𝐶 ) +no ( ω ·o 𝑆 ) ) +o 𝑀 ) )
176 164 175 eqtr2d ( 𝜑 → ( ( ( ω ·o 𝐶 ) +no ( ω ·o 𝑆 ) ) +o 𝑀 ) = ( 𝐴 +no ( ω ·o 𝑆 ) ) )
177 160 176 sseqtrd ( 𝜑 → ( ( ω ·o 𝐷 ) +o 𝑀 ) ⊆ ( 𝐴 +no ( ω ·o 𝑆 ) ) )
178 135 122 jca ( 𝜑 → ( 𝑀 ∈ On ∧ ( ω ·o 𝐷 ) ∈ On ) )
179 oaordi ( ( 𝑀 ∈ On ∧ ( ω ·o 𝐷 ) ∈ On ) → ( 𝑁𝑀 → ( ( ω ·o 𝐷 ) +o 𝑁 ) ∈ ( ( ω ·o 𝐷 ) +o 𝑀 ) ) )
180 178 6 179 sylc ( 𝜑 → ( ( ω ·o 𝐷 ) +o 𝑁 ) ∈ ( ( ω ·o 𝐷 ) +o 𝑀 ) )
181 2 180 eqeltrd ( 𝜑𝐵 ∈ ( ( ω ·o 𝐷 ) +o 𝑀 ) )
182 177 181 sseldd ( 𝜑𝐵 ∈ ( 𝐴 +no ( ω ·o 𝑆 ) ) )
183 119 151 182 3jca ( 𝜑 → ( ( 𝐶 +o 𝑆 ) = 𝐷 ∧ ( 𝐴 +o ( ω ·o 𝑆 ) ) ⊆ 𝐵𝐵 ∈ ( 𝐴 +no ( ω ·o 𝑆 ) ) ) )
184 oveq2 ( 𝑥 = 𝑆 → ( 𝐶 +o 𝑥 ) = ( 𝐶 +o 𝑆 ) )
185 184 eqeq1d ( 𝑥 = 𝑆 → ( ( 𝐶 +o 𝑥 ) = 𝐷 ↔ ( 𝐶 +o 𝑆 ) = 𝐷 ) )
186 oveq2 ( 𝑥 = 𝑆 → ( ω ·o 𝑥 ) = ( ω ·o 𝑆 ) )
187 186 oveq2d ( 𝑥 = 𝑆 → ( 𝐴 +o ( ω ·o 𝑥 ) ) = ( 𝐴 +o ( ω ·o 𝑆 ) ) )
188 187 sseq1d ( 𝑥 = 𝑆 → ( ( 𝐴 +o ( ω ·o 𝑥 ) ) ⊆ 𝐵 ↔ ( 𝐴 +o ( ω ·o 𝑆 ) ) ⊆ 𝐵 ) )
189 186 oveq2d ( 𝑥 = 𝑆 → ( 𝐴 +no ( ω ·o 𝑥 ) ) = ( 𝐴 +no ( ω ·o 𝑆 ) ) )
190 189 eleq2d ( 𝑥 = 𝑆 → ( 𝐵 ∈ ( 𝐴 +no ( ω ·o 𝑥 ) ) ↔ 𝐵 ∈ ( 𝐴 +no ( ω ·o 𝑆 ) ) ) )
191 185 188 190 3anbi123d ( 𝑥 = 𝑆 → ( ( ( 𝐶 +o 𝑥 ) = 𝐷 ∧ ( 𝐴 +o ( ω ·o 𝑥 ) ) ⊆ 𝐵𝐵 ∈ ( 𝐴 +no ( ω ·o 𝑥 ) ) ) ↔ ( ( 𝐶 +o 𝑆 ) = 𝐷 ∧ ( 𝐴 +o ( ω ·o 𝑆 ) ) ⊆ 𝐵𝐵 ∈ ( 𝐴 +no ( ω ·o 𝑆 ) ) ) ) )
192 191 rspcev ( ( 𝑆 ∈ ( On ∖ 1o ) ∧ ( ( 𝐶 +o 𝑆 ) = 𝐷 ∧ ( 𝐴 +o ( ω ·o 𝑆 ) ) ⊆ 𝐵𝐵 ∈ ( 𝐴 +no ( ω ·o 𝑆 ) ) ) ) → ∃ 𝑥 ∈ ( On ∖ 1o ) ( ( 𝐶 +o 𝑥 ) = 𝐷 ∧ ( 𝐴 +o ( ω ·o 𝑥 ) ) ⊆ 𝐵𝐵 ∈ ( 𝐴 +no ( ω ·o 𝑥 ) ) ) )
193 46 183 192 syl2anc ( 𝜑 → ∃ 𝑥 ∈ ( On ∖ 1o ) ( ( 𝐶 +o 𝑥 ) = 𝐷 ∧ ( 𝐴 +o ( ω ·o 𝑥 ) ) ⊆ 𝐵𝐵 ∈ ( 𝐴 +no ( ω ·o 𝑥 ) ) ) )