Metamath Proof Explorer


Theorem naddwordnexlem4

Description: When A is the sum of a limit ordinal (or zero) and a natural number and B is the sum of a larger limit ordinal and a smaller natural number, there exists a product with omega such that the ordinal sum with A is less than or equal to B while the natural sum is larger than B . (Contributed by RP, 15-Feb-2025)

Ref Expression
Hypotheses naddwordnex.a φ A = ω 𝑜 C + 𝑜 M
naddwordnex.b φ B = ω 𝑜 D + 𝑜 N
naddwordnex.c φ C D
naddwordnex.d φ D On
naddwordnex.m φ M ω
naddwordnex.n φ N M
naddwordnexlem4.s S = y On | D C + 𝑜 y
Assertion naddwordnexlem4 φ x On 1 𝑜 C + 𝑜 x = D A + 𝑜 ω 𝑜 x B B A + ω 𝑜 x

Proof

Step Hyp Ref Expression
1 naddwordnex.a φ A = ω 𝑜 C + 𝑜 M
2 naddwordnex.b φ B = ω 𝑜 D + 𝑜 N
3 naddwordnex.c φ C D
4 naddwordnex.d φ D On
5 naddwordnex.m φ M ω
6 naddwordnex.n φ N M
7 naddwordnexlem4.s S = y On | D C + 𝑜 y
8 7 ssrab3 S On
9 oveq2 y = D C + 𝑜 y = C + 𝑜 D
10 9 sseq2d y = D D C + 𝑜 y D C + 𝑜 D
11 onelon D On C D C On
12 4 3 11 syl2anc φ C On
13 oaword2 D On C On D C + 𝑜 D
14 4 12 13 syl2anc φ D C + 𝑜 D
15 10 4 14 elrabd φ D y On | D C + 𝑜 y
16 15 7 eleqtrrdi φ D S
17 16 ne0d φ S
18 oninton S On S S On
19 8 17 18 sylancr φ S On
20 oveq2 y = C + 𝑜 y = C + 𝑜
21 oa0 C On C + 𝑜 = C
22 12 21 syl φ C + 𝑜 = C
23 20 22 sylan9eqr φ y = C + 𝑜 y = C
24 3 adantr φ y = C D
25 23 24 eqeltrd φ y = C + 𝑜 y D
26 25 ex φ y = C + 𝑜 y D
27 26 adantr φ y On y = C + 𝑜 y D
28 27 con3d φ y On ¬ C + 𝑜 y D ¬ y =
29 oacl C On y On C + 𝑜 y On
30 12 29 sylan φ y On C + 𝑜 y On
31 ontri1 D On C + 𝑜 y On D C + 𝑜 y ¬ C + 𝑜 y D
32 4 30 31 syl2an2r φ y On D C + 𝑜 y ¬ C + 𝑜 y D
33 on0eln0 y On y y
34 df-ne y ¬ y =
35 33 34 bitrdi y On y ¬ y =
36 35 adantl φ y On y ¬ y =
37 28 32 36 3imtr4d φ y On D C + 𝑜 y y
38 37 ex φ y On D C + 𝑜 y y
39 38 ralrimiv φ y On D C + 𝑜 y y
40 0ex V
41 40 elintrab y On | D C + 𝑜 y y On D C + 𝑜 y y
42 39 41 sylibr φ y On | D C + 𝑜 y
43 7 inteqi S = y On | D C + 𝑜 y
44 42 43 eleqtrrdi φ S
45 ondif1 S On 1 𝑜 S On S
46 19 44 45 sylanbrc φ S On 1 𝑜
47 onzsl S On S = z On S = suc z S V Lim S
48 19 47 sylib φ S = z On S = suc z S V Lim S
49 oveq2 S = C + 𝑜 S = C + 𝑜
50 49 22 sylan9eqr φ S = C + 𝑜 S = C
51 onelpss C On D On C D C D C D
52 12 4 51 syl2anc φ C D C D C D
53 3 52 mpbid φ C D C D
54 53 simpld φ C D
55 54 adantr φ S = C D
56 50 55 eqsstrd φ S = C + 𝑜 S D
57 56 ex φ S = C + 𝑜 S D
58 oveq2 S = suc z C + 𝑜 S = C + 𝑜 suc z
59 oasuc C On z On C + 𝑜 suc z = suc C + 𝑜 z
60 12 59 sylan φ z On C + 𝑜 suc z = suc C + 𝑜 z
61 58 60 sylan9eqr φ z On S = suc z C + 𝑜 S = suc C + 𝑜 z
62 vex z V
63 62 sucid z suc z
64 eleq2 S = suc z z S z suc z
65 63 64 mpbiri S = suc z z S
66 65 a1i φ z On S = suc z z S
67 43 eleq2i z S z y On | D C + 𝑜 y
68 oveq2 y = z C + 𝑜 y = C + 𝑜 z
69 68 sseq2d y = z D C + 𝑜 y D C + 𝑜 z
70 69 onnminsb z On z y On | D C + 𝑜 y ¬ D C + 𝑜 z
71 70 adantl φ z On z y On | D C + 𝑜 y ¬ D C + 𝑜 z
72 67 71 biimtrid φ z On z S ¬ D C + 𝑜 z
73 oacl C On z On C + 𝑜 z On
74 12 73 sylan φ z On C + 𝑜 z On
75 ontri1 D On C + 𝑜 z On D C + 𝑜 z ¬ C + 𝑜 z D
76 4 74 75 syl2an2r φ z On D C + 𝑜 z ¬ C + 𝑜 z D
77 76 con2bid φ z On C + 𝑜 z D ¬ D C + 𝑜 z
78 72 77 sylibrd φ z On z S C + 𝑜 z D
79 onsucss D On C + 𝑜 z D suc C + 𝑜 z D
80 4 79 syl φ C + 𝑜 z D suc C + 𝑜 z D
81 80 adantr φ z On C + 𝑜 z D suc C + 𝑜 z D
82 66 78 81 3syld φ z On S = suc z suc C + 𝑜 z D
83 82 imp φ z On S = suc z suc C + 𝑜 z D
84 61 83 eqsstrd φ z On S = suc z C + 𝑜 S D
85 84 rexlimdva2 φ z On S = suc z C + 𝑜 S D
86 oalim C On S V Lim S C + 𝑜 S = z S C + 𝑜 z
87 12 86 sylan φ S V Lim S C + 𝑜 S = z S C + 𝑜 z
88 onelon S On z S z On
89 19 88 sylan φ z S z On
90 89 ex φ z S z On
91 90 ancrd φ z S z On z S
92 78 expimpd φ z On z S C + 𝑜 z D
93 onelss D On C + 𝑜 z D C + 𝑜 z D
94 4 93 syl φ C + 𝑜 z D C + 𝑜 z D
95 91 92 94 3syld φ z S C + 𝑜 z D
96 95 ralrimiv φ z S C + 𝑜 z D
97 iunss z S C + 𝑜 z D z S C + 𝑜 z D
98 96 97 sylibr φ z S C + 𝑜 z D
99 98 adantr φ S V Lim S z S C + 𝑜 z D
100 87 99 eqsstrd φ S V Lim S C + 𝑜 S D
101 100 ex φ S V Lim S C + 𝑜 S D
102 57 85 101 3jaod φ S = z On S = suc z S V Lim S C + 𝑜 S D
103 48 102 mpd φ C + 𝑜 S D
104 10 rspcev D On D C + 𝑜 D y On D C + 𝑜 y
105 4 14 104 syl2anc φ y On D C + 𝑜 y
106 nfcv _ y D
107 nfcv _ y C
108 nfcv _ y + 𝑜
109 nfrab1 _ y y On | D C + 𝑜 y
110 109 nfint _ y y On | D C + 𝑜 y
111 107 108 110 nfov _ y C + 𝑜 y On | D C + 𝑜 y
112 106 111 nfss y D C + 𝑜 y On | D C + 𝑜 y
113 oveq2 y = y On | D C + 𝑜 y C + 𝑜 y = C + 𝑜 y On | D C + 𝑜 y
114 113 sseq2d y = y On | D C + 𝑜 y D C + 𝑜 y D C + 𝑜 y On | D C + 𝑜 y
115 112 114 onminsb y On D C + 𝑜 y D C + 𝑜 y On | D C + 𝑜 y
116 105 115 syl φ D C + 𝑜 y On | D C + 𝑜 y
117 43 oveq2i C + 𝑜 S = C + 𝑜 y On | D C + 𝑜 y
118 116 117 sseqtrrdi φ D C + 𝑜 S
119 103 118 eqssd φ C + 𝑜 S = D
120 omelon ω On
121 omcl ω On D On ω 𝑜 D On
122 120 4 121 sylancr φ ω 𝑜 D On
123 120 a1i φ ω On
124 6 5 jca φ N M M ω
125 ontr1 ω On N M M ω N ω
126 123 124 125 sylc φ N ω
127 nnon N ω N On
128 126 127 syl φ N On
129 oaword1 ω 𝑜 D On N On ω 𝑜 D ω 𝑜 D + 𝑜 N
130 122 128 129 syl2anc φ ω 𝑜 D ω 𝑜 D + 𝑜 N
131 1 oveq1d φ A + 𝑜 ω 𝑜 S = ω 𝑜 C + 𝑜 M + 𝑜 ω 𝑜 S
132 omcl ω On C On ω 𝑜 C On
133 120 12 132 sylancr φ ω 𝑜 C On
134 nnon M ω M On
135 5 134 syl φ M On
136 omcl ω On S On ω 𝑜 S On
137 120 19 136 sylancr φ ω 𝑜 S On
138 oaass ω 𝑜 C On M On ω 𝑜 S On ω 𝑜 C + 𝑜 M + 𝑜 ω 𝑜 S = ω 𝑜 C + 𝑜 M + 𝑜 ω 𝑜 S
139 133 135 137 138 syl3anc φ ω 𝑜 C + 𝑜 M + 𝑜 ω 𝑜 S = ω 𝑜 C + 𝑜 M + 𝑜 ω 𝑜 S
140 19 120 jctil φ ω On S On
141 omword1 ω On S On S ω ω 𝑜 S
142 140 44 141 syl2anc φ ω ω 𝑜 S
143 oaabs M ω ω 𝑜 S On ω ω 𝑜 S M + 𝑜 ω 𝑜 S = ω 𝑜 S
144 5 137 142 143 syl21anc φ M + 𝑜 ω 𝑜 S = ω 𝑜 S
145 144 oveq2d φ ω 𝑜 C + 𝑜 M + 𝑜 ω 𝑜 S = ω 𝑜 C + 𝑜 ω 𝑜 S
146 odi ω On C On S On ω 𝑜 C + 𝑜 S = ω 𝑜 C + 𝑜 ω 𝑜 S
147 123 12 19 146 syl3anc φ ω 𝑜 C + 𝑜 S = ω 𝑜 C + 𝑜 ω 𝑜 S
148 119 oveq2d φ ω 𝑜 C + 𝑜 S = ω 𝑜 D
149 145 147 148 3eqtr2d φ ω 𝑜 C + 𝑜 M + 𝑜 ω 𝑜 S = ω 𝑜 D
150 131 139 149 3eqtrd φ A + 𝑜 ω 𝑜 S = ω 𝑜 D
151 130 150 2 3sstr4d φ A + 𝑜 ω 𝑜 S B
152 naddcl ω 𝑜 C On ω 𝑜 S On ω 𝑜 C + ω 𝑜 S On
153 133 137 152 syl2anc φ ω 𝑜 C + ω 𝑜 S On
154 122 153 135 3jca φ ω 𝑜 D On ω 𝑜 C + ω 𝑜 S On M On
155 148 147 eqtr3d φ ω 𝑜 D = ω 𝑜 C + 𝑜 ω 𝑜 S
156 naddgeoa ω 𝑜 C On ω 𝑜 S On ω 𝑜 C + 𝑜 ω 𝑜 S ω 𝑜 C + ω 𝑜 S
157 133 137 156 syl2anc φ ω 𝑜 C + 𝑜 ω 𝑜 S ω 𝑜 C + ω 𝑜 S
158 155 157 eqsstrd φ ω 𝑜 D ω 𝑜 C + ω 𝑜 S
159 oawordri ω 𝑜 D On ω 𝑜 C + ω 𝑜 S On M On ω 𝑜 D ω 𝑜 C + ω 𝑜 S ω 𝑜 D + 𝑜 M ω 𝑜 C + ω 𝑜 S + 𝑜 M
160 154 158 159 sylc φ ω 𝑜 D + 𝑜 M ω 𝑜 C + ω 𝑜 S + 𝑜 M
161 naddonnn ω 𝑜 C On M ω ω 𝑜 C + 𝑜 M = ω 𝑜 C + M
162 133 5 161 syl2anc φ ω 𝑜 C + 𝑜 M = ω 𝑜 C + M
163 1 162 eqtrd φ A = ω 𝑜 C + M
164 163 oveq1d φ A + ω 𝑜 S = ω 𝑜 C + M + ω 𝑜 S
165 naddass ω 𝑜 C On M On ω 𝑜 S On ω 𝑜 C + M + ω 𝑜 S = ω 𝑜 C + M + ω 𝑜 S
166 133 135 137 165 syl3anc φ ω 𝑜 C + M + ω 𝑜 S = ω 𝑜 C + M + ω 𝑜 S
167 naddcom M On ω 𝑜 S On M + ω 𝑜 S = ω 𝑜 S + M
168 135 137 167 syl2anc φ M + ω 𝑜 S = ω 𝑜 S + M
169 168 oveq2d φ ω 𝑜 C + M + ω 𝑜 S = ω 𝑜 C + ω 𝑜 S + M
170 naddonnn ω 𝑜 C + ω 𝑜 S On M ω ω 𝑜 C + ω 𝑜 S + 𝑜 M = ω 𝑜 C + ω 𝑜 S + M
171 153 5 170 syl2anc φ ω 𝑜 C + ω 𝑜 S + 𝑜 M = ω 𝑜 C + ω 𝑜 S + M
172 naddass ω 𝑜 C On ω 𝑜 S On M On ω 𝑜 C + ω 𝑜 S + M = ω 𝑜 C + ω 𝑜 S + M
173 133 137 135 172 syl3anc φ ω 𝑜 C + ω 𝑜 S + M = ω 𝑜 C + ω 𝑜 S + M
174 171 173 eqtr2d φ ω 𝑜 C + ω 𝑜 S + M = ω 𝑜 C + ω 𝑜 S + 𝑜 M
175 166 169 174 3eqtrd φ ω 𝑜 C + M + ω 𝑜 S = ω 𝑜 C + ω 𝑜 S + 𝑜 M
176 164 175 eqtr2d φ ω 𝑜 C + ω 𝑜 S + 𝑜 M = A + ω 𝑜 S
177 160 176 sseqtrd φ ω 𝑜 D + 𝑜 M A + ω 𝑜 S
178 135 122 jca φ M On ω 𝑜 D On
179 oaordi M On ω 𝑜 D On N M ω 𝑜 D + 𝑜 N ω 𝑜 D + 𝑜 M
180 178 6 179 sylc φ ω 𝑜 D + 𝑜 N ω 𝑜 D + 𝑜 M
181 2 180 eqeltrd φ B ω 𝑜 D + 𝑜 M
182 177 181 sseldd φ B A + ω 𝑜 S
183 119 151 182 3jca φ C + 𝑜 S = D A + 𝑜 ω 𝑜 S B B A + ω 𝑜 S
184 oveq2 x = S C + 𝑜 x = C + 𝑜 S
185 184 eqeq1d x = S C + 𝑜 x = D C + 𝑜 S = D
186 oveq2 x = S ω 𝑜 x = ω 𝑜 S
187 186 oveq2d x = S A + 𝑜 ω 𝑜 x = A + 𝑜 ω 𝑜 S
188 187 sseq1d x = S A + 𝑜 ω 𝑜 x B A + 𝑜 ω 𝑜 S B
189 186 oveq2d x = S A + ω 𝑜 x = A + ω 𝑜 S
190 189 eleq2d x = S B A + ω 𝑜 x B A + ω 𝑜 S
191 185 188 190 3anbi123d x = S C + 𝑜 x = D A + 𝑜 ω 𝑜 x B B A + ω 𝑜 x C + 𝑜 S = D A + 𝑜 ω 𝑜 S B B A + ω 𝑜 S
192 191 rspcev S On 1 𝑜 C + 𝑜 S = D A + 𝑜 ω 𝑜 S B B A + ω 𝑜 S x On 1 𝑜 C + 𝑜 x = D A + 𝑜 ω 𝑜 x B B A + ω 𝑜 x
193 46 183 192 syl2anc φ x On 1 𝑜 C + 𝑜 x = D A + 𝑜 ω 𝑜 x B B A + ω 𝑜 x