| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
|
| 2 |
1
|
oveq1d |
|
| 3 |
|
oveq1 |
|
| 4 |
2 3
|
eqeq12d |
|
| 5 |
|
oveq2 |
|
| 6 |
5
|
oveq1d |
|
| 7 |
|
oveq1 |
|
| 8 |
7
|
oveq2d |
|
| 9 |
6 8
|
eqeq12d |
|
| 10 |
|
oveq2 |
|
| 11 |
|
oveq2 |
|
| 12 |
11
|
oveq2d |
|
| 13 |
10 12
|
eqeq12d |
|
| 14 |
|
oveq1 |
|
| 15 |
14
|
oveq1d |
|
| 16 |
|
oveq1 |
|
| 17 |
15 16
|
eqeq12d |
|
| 18 |
|
oveq2 |
|
| 19 |
18
|
oveq1d |
|
| 20 |
|
oveq1 |
|
| 21 |
20
|
oveq2d |
|
| 22 |
19 21
|
eqeq12d |
|
| 23 |
5
|
oveq1d |
|
| 24 |
20
|
oveq2d |
|
| 25 |
23 24
|
eqeq12d |
|
| 26 |
|
oveq2 |
|
| 27 |
11
|
oveq2d |
|
| 28 |
26 27
|
eqeq12d |
|
| 29 |
|
oveq1 |
|
| 30 |
29
|
oveq1d |
|
| 31 |
|
oveq1 |
|
| 32 |
30 31
|
eqeq12d |
|
| 33 |
|
oveq2 |
|
| 34 |
33
|
oveq1d |
|
| 35 |
|
oveq1 |
|
| 36 |
35
|
oveq2d |
|
| 37 |
34 36
|
eqeq12d |
|
| 38 |
|
oveq2 |
|
| 39 |
|
oveq2 |
|
| 40 |
39
|
oveq2d |
|
| 41 |
38 40
|
eqeq12d |
|
| 42 |
|
simpr21 |
|
| 43 |
|
eleq1 |
|
| 44 |
43
|
ralimi |
|
| 45 |
|
ralbi |
|
| 46 |
42 44 45
|
3syl |
|
| 47 |
|
simpr23 |
|
| 48 |
|
eleq1 |
|
| 49 |
48
|
ralimi |
|
| 50 |
|
ralbi |
|
| 51 |
47 49 50
|
3syl |
|
| 52 |
|
simpr3 |
|
| 53 |
|
eleq1 |
|
| 54 |
53
|
ralimi |
|
| 55 |
|
ralbi |
|
| 56 |
52 54 55
|
3syl |
|
| 57 |
46 51 56
|
3anbi123d |
|
| 58 |
57
|
rabbidv |
|
| 59 |
58
|
inteqd |
|
| 60 |
|
naddasslem1 |
|
| 61 |
60
|
adantr |
|
| 62 |
|
naddasslem2 |
|
| 63 |
62
|
adantr |
|
| 64 |
59 61 63
|
3eqtr4d |
|
| 65 |
64
|
ex |
|
| 66 |
4 9 13 17 22 25 28 32 37 41 65
|
on3ind |
|