Metamath Proof Explorer


Theorem naddwordnexlem3

Description: When A is the sum of a limit ordinal (or zero) and a natural number and B is the sum of a larger limit ordinal and a smaller natural number, every natural sum of A with a natural number is less that B . (Contributed by RP, 14-Feb-2025)

Ref Expression
Hypotheses naddwordnex.a φ A = ω 𝑜 C + 𝑜 M
naddwordnex.b φ B = ω 𝑜 D + 𝑜 N
naddwordnex.c φ C D
naddwordnex.d φ D On
naddwordnex.m φ M ω
naddwordnex.n φ N M
Assertion naddwordnexlem3 φ x ω A + x B

Proof

Step Hyp Ref Expression
1 naddwordnex.a φ A = ω 𝑜 C + 𝑜 M
2 naddwordnex.b φ B = ω 𝑜 D + 𝑜 N
3 naddwordnex.c φ C D
4 naddwordnex.d φ D On
5 naddwordnex.m φ M ω
6 naddwordnex.n φ N M
7 omelon ω On
8 onelon D On C D C On
9 4 3 8 syl2anc φ C On
10 omcl ω On C On ω 𝑜 C On
11 7 9 10 sylancr φ ω 𝑜 C On
12 nnon M ω M On
13 5 12 syl φ M On
14 oacl ω 𝑜 C On M On ω 𝑜 C + 𝑜 M On
15 11 13 14 syl2anc φ ω 𝑜 C + 𝑜 M On
16 1 15 eqeltrd φ A On
17 naddonnn A On x ω A + 𝑜 x = A + x
18 16 17 sylan φ x ω A + 𝑜 x = A + x
19 1 2 3 4 5 6 naddwordnexlem0 φ A ω 𝑜 suc C ω 𝑜 suc C B
20 19 simprd φ ω 𝑜 suc C B
21 20 adantr φ x ω ω 𝑜 suc C B
22 11 7 jctil φ ω On ω 𝑜 C On
23 22 adantr φ x ω ω On ω 𝑜 C On
24 nnacl M ω x ω M + 𝑜 x ω
25 5 24 sylan φ x ω M + 𝑜 x ω
26 oaordi ω On ω 𝑜 C On M + 𝑜 x ω ω 𝑜 C + 𝑜 M + 𝑜 x ω 𝑜 C + 𝑜 ω
27 23 25 26 sylc φ x ω ω 𝑜 C + 𝑜 M + 𝑜 x ω 𝑜 C + 𝑜 ω
28 1 adantr φ x ω A = ω 𝑜 C + 𝑜 M
29 28 oveq1d φ x ω A + 𝑜 x = ω 𝑜 C + 𝑜 M + 𝑜 x
30 nnon x ω x On
31 oaass ω 𝑜 C On M On x On ω 𝑜 C + 𝑜 M + 𝑜 x = ω 𝑜 C + 𝑜 M + 𝑜 x
32 11 13 30 31 syl2an3an φ x ω ω 𝑜 C + 𝑜 M + 𝑜 x = ω 𝑜 C + 𝑜 M + 𝑜 x
33 29 32 eqtrd φ x ω A + 𝑜 x = ω 𝑜 C + 𝑜 M + 𝑜 x
34 9 adantr φ x ω C On
35 omsuc ω On C On ω 𝑜 suc C = ω 𝑜 C + 𝑜 ω
36 7 34 35 sylancr φ x ω ω 𝑜 suc C = ω 𝑜 C + 𝑜 ω
37 27 33 36 3eltr4d φ x ω A + 𝑜 x ω 𝑜 suc C
38 21 37 sseldd φ x ω A + 𝑜 x B
39 18 38 eqeltrrd φ x ω A + x B
40 39 ex φ x ω A + x B
41 40 ralrimiv φ x ω A + x B