Step |
Hyp |
Ref |
Expression |
1 |
|
naddwordnex.a |
⊢ ( 𝜑 → 𝐴 = ( ( ω ·o 𝐶 ) +o 𝑀 ) ) |
2 |
|
naddwordnex.b |
⊢ ( 𝜑 → 𝐵 = ( ( ω ·o 𝐷 ) +o 𝑁 ) ) |
3 |
|
naddwordnex.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝐷 ) |
4 |
|
naddwordnex.d |
⊢ ( 𝜑 → 𝐷 ∈ On ) |
5 |
|
naddwordnex.m |
⊢ ( 𝜑 → 𝑀 ∈ ω ) |
6 |
|
naddwordnex.n |
⊢ ( 𝜑 → 𝑁 ∈ 𝑀 ) |
7 |
|
omelon |
⊢ ω ∈ On |
8 |
|
onelon |
⊢ ( ( 𝐷 ∈ On ∧ 𝐶 ∈ 𝐷 ) → 𝐶 ∈ On ) |
9 |
4 3 8
|
syl2anc |
⊢ ( 𝜑 → 𝐶 ∈ On ) |
10 |
|
omcl |
⊢ ( ( ω ∈ On ∧ 𝐶 ∈ On ) → ( ω ·o 𝐶 ) ∈ On ) |
11 |
7 9 10
|
sylancr |
⊢ ( 𝜑 → ( ω ·o 𝐶 ) ∈ On ) |
12 |
|
nnon |
⊢ ( 𝑀 ∈ ω → 𝑀 ∈ On ) |
13 |
5 12
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ On ) |
14 |
|
oacl |
⊢ ( ( ( ω ·o 𝐶 ) ∈ On ∧ 𝑀 ∈ On ) → ( ( ω ·o 𝐶 ) +o 𝑀 ) ∈ On ) |
15 |
11 13 14
|
syl2anc |
⊢ ( 𝜑 → ( ( ω ·o 𝐶 ) +o 𝑀 ) ∈ On ) |
16 |
1 15
|
eqeltrd |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
17 |
|
naddonnn |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ ω ) → ( 𝐴 +o 𝑥 ) = ( 𝐴 +no 𝑥 ) ) |
18 |
16 17
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ω ) → ( 𝐴 +o 𝑥 ) = ( 𝐴 +no 𝑥 ) ) |
19 |
1 2 3 4 5 6
|
naddwordnexlem0 |
⊢ ( 𝜑 → ( 𝐴 ∈ ( ω ·o suc 𝐶 ) ∧ ( ω ·o suc 𝐶 ) ⊆ 𝐵 ) ) |
20 |
19
|
simprd |
⊢ ( 𝜑 → ( ω ·o suc 𝐶 ) ⊆ 𝐵 ) |
21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ω ) → ( ω ·o suc 𝐶 ) ⊆ 𝐵 ) |
22 |
11 7
|
jctil |
⊢ ( 𝜑 → ( ω ∈ On ∧ ( ω ·o 𝐶 ) ∈ On ) ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ω ) → ( ω ∈ On ∧ ( ω ·o 𝐶 ) ∈ On ) ) |
24 |
|
nnacl |
⊢ ( ( 𝑀 ∈ ω ∧ 𝑥 ∈ ω ) → ( 𝑀 +o 𝑥 ) ∈ ω ) |
25 |
5 24
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ω ) → ( 𝑀 +o 𝑥 ) ∈ ω ) |
26 |
|
oaordi |
⊢ ( ( ω ∈ On ∧ ( ω ·o 𝐶 ) ∈ On ) → ( ( 𝑀 +o 𝑥 ) ∈ ω → ( ( ω ·o 𝐶 ) +o ( 𝑀 +o 𝑥 ) ) ∈ ( ( ω ·o 𝐶 ) +o ω ) ) ) |
27 |
23 25 26
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ω ) → ( ( ω ·o 𝐶 ) +o ( 𝑀 +o 𝑥 ) ) ∈ ( ( ω ·o 𝐶 ) +o ω ) ) |
28 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ω ) → 𝐴 = ( ( ω ·o 𝐶 ) +o 𝑀 ) ) |
29 |
28
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ω ) → ( 𝐴 +o 𝑥 ) = ( ( ( ω ·o 𝐶 ) +o 𝑀 ) +o 𝑥 ) ) |
30 |
|
nnon |
⊢ ( 𝑥 ∈ ω → 𝑥 ∈ On ) |
31 |
|
oaass |
⊢ ( ( ( ω ·o 𝐶 ) ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ On ) → ( ( ( ω ·o 𝐶 ) +o 𝑀 ) +o 𝑥 ) = ( ( ω ·o 𝐶 ) +o ( 𝑀 +o 𝑥 ) ) ) |
32 |
11 13 30 31
|
syl2an3an |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ω ) → ( ( ( ω ·o 𝐶 ) +o 𝑀 ) +o 𝑥 ) = ( ( ω ·o 𝐶 ) +o ( 𝑀 +o 𝑥 ) ) ) |
33 |
29 32
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ω ) → ( 𝐴 +o 𝑥 ) = ( ( ω ·o 𝐶 ) +o ( 𝑀 +o 𝑥 ) ) ) |
34 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ω ) → 𝐶 ∈ On ) |
35 |
|
omsuc |
⊢ ( ( ω ∈ On ∧ 𝐶 ∈ On ) → ( ω ·o suc 𝐶 ) = ( ( ω ·o 𝐶 ) +o ω ) ) |
36 |
7 34 35
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ω ) → ( ω ·o suc 𝐶 ) = ( ( ω ·o 𝐶 ) +o ω ) ) |
37 |
27 33 36
|
3eltr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ω ) → ( 𝐴 +o 𝑥 ) ∈ ( ω ·o suc 𝐶 ) ) |
38 |
21 37
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ω ) → ( 𝐴 +o 𝑥 ) ∈ 𝐵 ) |
39 |
18 38
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ω ) → ( 𝐴 +no 𝑥 ) ∈ 𝐵 ) |
40 |
39
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ ω → ( 𝐴 +no 𝑥 ) ∈ 𝐵 ) ) |
41 |
40
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ω ( 𝐴 +no 𝑥 ) ∈ 𝐵 ) |