| Step |
Hyp |
Ref |
Expression |
| 1 |
|
naddwordnex.a |
⊢ ( 𝜑 → 𝐴 = ( ( ω ·o 𝐶 ) +o 𝑀 ) ) |
| 2 |
|
naddwordnex.b |
⊢ ( 𝜑 → 𝐵 = ( ( ω ·o 𝐷 ) +o 𝑁 ) ) |
| 3 |
|
naddwordnex.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝐷 ) |
| 4 |
|
naddwordnex.d |
⊢ ( 𝜑 → 𝐷 ∈ On ) |
| 5 |
|
naddwordnex.m |
⊢ ( 𝜑 → 𝑀 ∈ ω ) |
| 6 |
|
naddwordnex.n |
⊢ ( 𝜑 → 𝑁 ∈ 𝑀 ) |
| 7 |
|
omelon |
⊢ ω ∈ On |
| 8 |
7
|
a1i |
⊢ ( 𝜑 → ω ∈ On ) |
| 9 |
|
onelon |
⊢ ( ( 𝐷 ∈ On ∧ 𝐶 ∈ 𝐷 ) → 𝐶 ∈ On ) |
| 10 |
4 3 9
|
syl2anc |
⊢ ( 𝜑 → 𝐶 ∈ On ) |
| 11 |
|
omcl |
⊢ ( ( ω ∈ On ∧ 𝐶 ∈ On ) → ( ω ·o 𝐶 ) ∈ On ) |
| 12 |
8 10 11
|
syl2anc |
⊢ ( 𝜑 → ( ω ·o 𝐶 ) ∈ On ) |
| 13 |
8 12
|
jca |
⊢ ( 𝜑 → ( ω ∈ On ∧ ( ω ·o 𝐶 ) ∈ On ) ) |
| 14 |
|
oaordi |
⊢ ( ( ω ∈ On ∧ ( ω ·o 𝐶 ) ∈ On ) → ( 𝑀 ∈ ω → ( ( ω ·o 𝐶 ) +o 𝑀 ) ∈ ( ( ω ·o 𝐶 ) +o ω ) ) ) |
| 15 |
13 5 14
|
sylc |
⊢ ( 𝜑 → ( ( ω ·o 𝐶 ) +o 𝑀 ) ∈ ( ( ω ·o 𝐶 ) +o ω ) ) |
| 16 |
|
omsuc |
⊢ ( ( ω ∈ On ∧ 𝐶 ∈ On ) → ( ω ·o suc 𝐶 ) = ( ( ω ·o 𝐶 ) +o ω ) ) |
| 17 |
8 10 16
|
syl2anc |
⊢ ( 𝜑 → ( ω ·o suc 𝐶 ) = ( ( ω ·o 𝐶 ) +o ω ) ) |
| 18 |
15 1 17
|
3eltr4d |
⊢ ( 𝜑 → 𝐴 ∈ ( ω ·o suc 𝐶 ) ) |
| 19 |
|
onsuc |
⊢ ( 𝐶 ∈ On → suc 𝐶 ∈ On ) |
| 20 |
10 19
|
syl |
⊢ ( 𝜑 → suc 𝐶 ∈ On ) |
| 21 |
20 4 8
|
3jca |
⊢ ( 𝜑 → ( suc 𝐶 ∈ On ∧ 𝐷 ∈ On ∧ ω ∈ On ) ) |
| 22 |
|
onsucss |
⊢ ( 𝐷 ∈ On → ( 𝐶 ∈ 𝐷 → suc 𝐶 ⊆ 𝐷 ) ) |
| 23 |
4 3 22
|
sylc |
⊢ ( 𝜑 → suc 𝐶 ⊆ 𝐷 ) |
| 24 |
|
omwordi |
⊢ ( ( suc 𝐶 ∈ On ∧ 𝐷 ∈ On ∧ ω ∈ On ) → ( suc 𝐶 ⊆ 𝐷 → ( ω ·o suc 𝐶 ) ⊆ ( ω ·o 𝐷 ) ) ) |
| 25 |
21 23 24
|
sylc |
⊢ ( 𝜑 → ( ω ·o suc 𝐶 ) ⊆ ( ω ·o 𝐷 ) ) |
| 26 |
|
omcl |
⊢ ( ( ω ∈ On ∧ 𝐷 ∈ On ) → ( ω ·o 𝐷 ) ∈ On ) |
| 27 |
8 4 26
|
syl2anc |
⊢ ( 𝜑 → ( ω ·o 𝐷 ) ∈ On ) |
| 28 |
6 5
|
jca |
⊢ ( 𝜑 → ( 𝑁 ∈ 𝑀 ∧ 𝑀 ∈ ω ) ) |
| 29 |
|
ontr1 |
⊢ ( ω ∈ On → ( ( 𝑁 ∈ 𝑀 ∧ 𝑀 ∈ ω ) → 𝑁 ∈ ω ) ) |
| 30 |
8 28 29
|
sylc |
⊢ ( 𝜑 → 𝑁 ∈ ω ) |
| 31 |
|
nnon |
⊢ ( 𝑁 ∈ ω → 𝑁 ∈ On ) |
| 32 |
30 31
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ On ) |
| 33 |
|
oaword1 |
⊢ ( ( ( ω ·o 𝐷 ) ∈ On ∧ 𝑁 ∈ On ) → ( ω ·o 𝐷 ) ⊆ ( ( ω ·o 𝐷 ) +o 𝑁 ) ) |
| 34 |
27 32 33
|
syl2anc |
⊢ ( 𝜑 → ( ω ·o 𝐷 ) ⊆ ( ( ω ·o 𝐷 ) +o 𝑁 ) ) |
| 35 |
25 34
|
sstrd |
⊢ ( 𝜑 → ( ω ·o suc 𝐶 ) ⊆ ( ( ω ·o 𝐷 ) +o 𝑁 ) ) |
| 36 |
35 2
|
sseqtrrd |
⊢ ( 𝜑 → ( ω ·o suc 𝐶 ) ⊆ 𝐵 ) |
| 37 |
18 36
|
jca |
⊢ ( 𝜑 → ( 𝐴 ∈ ( ω ·o suc 𝐶 ) ∧ ( ω ·o suc 𝐶 ) ⊆ 𝐵 ) ) |